Biogenic carbonyls, especially aldehydes, have previously demonstrated their potential to serve as early diagnostic biomarkers for disease and injury that have not been fully realized owing, in part, to the lack of a rapid and simple point-of-care method for aldehyde identification. The ability to determine which carbonyl compound is elevated and not just the total aldehydic load may provide more disease- or injury-specific diagnostic information. Toward this end, a novel fluorophore is presented that is able to form a complex with biogenic carbonyls under catalyst-free conditions so as to give a fluorescent fingerprint of the resulting hydrazone.
View Article and Find Full Text PDFThe analysis of biological shapes has applications in many areas of biology, and tools exist to quantify organ shape and detect shape differences between species or among variants. However, such measurements do not provide any information about the mechanisms of shape generation. Quantitative data on growth patterns may provide insights into morphogenetic processes, but since growth is a complex process occurring in four dimensions, growth patterns alone cannot intuitively be linked to shape outcomes.
View Article and Find Full Text PDFOptimizing nodulation in legumes is a target for crop improvement, and the spatial control of nodulation is just beginning to be unravelled. However, there is currently no method for standard phenotyping of nodulation patterns. Here we present a method and software for the quantitative analysis of nodulation phenotypes.
View Article and Find Full Text PDFMost important breeding goals in ornamental crops are plant appearance and flower characteristics where selection is visually performed on direct offspring of crossings. We developed an image analysis toolbox for the acquisition of flower and petal images from cultivated carnation (Dianthus caryophyllus L.) that was validated by a detailed analysis of flower and petal size and shape in 78 commercial cultivars of D.
View Article and Find Full Text PDFGrowth patterns vary in space and time as an organ develops, leading to shape and size changes. Quantifying spatiotemporal variations in organ growth throughout development is therefore crucial to understand how organ shape is controlled. We present a novel method and computational tools to quantify spatial patterns of growth from three-dimensional data at the adaxial surface of leaves.
View Article and Find Full Text PDFThe fact that some organisms are able to regenerate organs of the correct shape and size following amputation is particularly fascinating, but the mechanism by which this occurs remains poorly understood. The zebrafish (Danio rerio) caudal fin has emerged as a model system for the study of bone development and regeneration. The fin comprises 16 to 18 bony rays, each containing multiple joints along its proximodistal axis that give rise to segments.
View Article and Find Full Text PDFThe leaf vasculature plays crucial roles in transport and mechanical support. Understanding how vein patterns develop and what underlies pattern variation between species has many implications from both physiological and evolutionary perspectives. We developed a method for extracting spatial vein pattern data from leaf images, such as vein densities and also the sizes and shapes of the vein reticulations.
View Article and Find Full Text PDFNetwork and branching structures play essential roles in transport and/or mechanical support in multicellular organisms. In plant leaves, vasculature contributes to both processes. Recent descriptions of network leaf vein patterning in the model plant Arabidopsis thaliana indicate that veins initially extend from local maxima of the plant hormone auxin in the leaf margin, and network patterns then form within the blade.
View Article and Find Full Text PDFApplications of computational techniques to developmental plant biology include the processing of experimental data and the construction of simulation models. Substantial progress has been made in these areas over the past few years. Complex image-processing techniques are used to integrate sequences of two-dimensional images into three-dimensional descriptions of development over time and to extract useful quantitative traits.
View Article and Find Full Text PDFIn both plants and animals vein networks play an essential role in transporting nutrients. In plants veins may also provide mechanical support. The mechanism by which vein patterns are formed in a developing leaf remains largely unresolved.
View Article and Find Full Text PDFWe describe a method for estimating growth parameters in various regions of a developing organ undergoing cell divisions, along with the corresponding changes in organ shape. Growth parameters are computed by coupling clonal analysis with a growth model, allowing a wide range of developmental stages to be covered. The method was applied to the development of dorsal petal lobes of Antirrhinum majus.
View Article and Find Full Text PDFAlthough much progress has been made in understanding how gene expression patterns are established during development, much less is known about how these patterns are related to the growth of biological shapes. Here we describe conceptual and experimental approaches to bridging this gap, with particular reference to plant development where lack of cell movement simplifies matters. Growth and shape change in plants can be fully described with four types of regional parameter: growth rate, anisotropy, direction, and rotation.
View Article and Find Full Text PDFDevelopment commonly involves the generation of complex shapes from simpler ones. One way of following this process is to use landmarks to track the fate of particular points in a developing organ, but this is limited by the time over which it can be monitored. Here we use an alternative method, clonal analysis, whereby dividing cells are genetically marked and their descendants identified visually, to observe the development of Antirrhinum (snapdragon) petals.
View Article and Find Full Text PDF