Background: We recently demonstrated in a randomized controlled trial (APOMORPHEE, NCT02940912) that night-time only subcutaneous apomorphine infusion improves sleep disturbances and insomnia in patients with advanced Parkinson's disease and moderate to severe insomnia.
Objectives: To identify the best candidates for receiving night-time only subcutaneous apomorphine infusion in routine care.
Methods: In this post-hoc analysis of APOMORPHEE, we compared the characteristics of patients according to whether they chose to continue night-time only subcutaneous apomorphine infusion at the end of the study period or not.
Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is an inherited late-onset neurological disease caused by bi-allelic AAGGG pentanucleotide expansions within intron 2 of RFC1. Despite extensive studies, the pathophysiological mechanism of these intronic expansions remains elusive. We screened by clinical exome sequencing two unrelated patients presenting with late-onset ataxia.
View Article and Find Full Text PDFBackground: Insomnia is a frequent complaint of patients with Parkinson's disease, and it negatively affects quality of life. Drugs that improve both sleep and parkinsonism would be of major benefit to patients with Parkinson's disease-related insomnia. We aimed to test the safety and efficacy of subcutaneous night-time only apomorphine infusion in patients with Parkinson's disease and insomnia.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
September 2018
Immunohistochemical (IHC) α-synuclein (Asyn) pathology in peripheral biopsies may be a biomarker of Parkinson disease (PD). The multi-center Systemic Synuclein Sampling Study (S4) is evaluating IHC Asyn pathology within skin, colon and submandibular gland biopsies from 60 PD and 20 control subjects. Asyn pathology is being evaluated by a blinded panel of specially trained neuropathologists.
View Article and Find Full Text PDFTau is normally a highly soluble phosphoprotein found predominantly in neurons. Six different isoforms of tau are expressed in the adult human CNS. Under pathological conditions, phosphorylated tau aggregates are a defining feature of neurodegenerative disorders called tauopathies.
View Article and Find Full Text PDFLewy bodies and neurites, the pathological hallmarks found in the brain of Parkinson's disease (PD) patients, are primarily composed of aggregated and hyperphosphorylated alpha-synuclein. The observation that alpha-synuclein inclusions are also found in the gut of the vast majority of parkinsonian patients has led to an increasing number of studies aimed at developing diagnostic procedures based on the detection of pathological alpha-synuclein in gastrointestinal biopsies. The previous studies, which have all used immunohistochemistry for the detection of alpha-synuclein, have provided conflicting results.
View Article and Find Full Text PDFThe past 20 years has witnessed tremendous progress in our understanding of Parkinson's disease. It is now well established that α-synuclein, a presynaptic neuronal protein, is not only a marker but also an actor of the disease. In this review, we discuss the advances that have been obtained in neuropathology using α-synuclein immunohistochemistry and the role of this protein in the spread of the disease.
View Article and Find Full Text PDFBackground: Conflicting results from studies of Lewy-type α-synucleinopathy (LTS) in colonic biopsies of subjects with Parkinson's disease (PD) prompted a two-part multicenter assessment. The first assessment, now published (Acta Neuropathol Commun 4 : 35, 2016), examined archived colonic biopsies and found that none of the tested methods was adequately sensitive or specific.
Objective: As the amount of nervous tissue in typical colonic biopsies may be insufficient, and the clinical diagnosis of PD not completely accurate, the objective of the current study was to use instead full-thickness sections of sigmoid colon from autopsy-proven PD and normal subjects.
Since the observation that aggregated α-synuclein, the pathological hallmark of Parkinson's disease (PD), is found in the gut in almost all patients, it has been suggested that the enteric nervous system (ENS) could be a starting point for α-synuclein pathology. α-synuclein has long been thought to occur as a monomer in living cells, but recent studies reported that it instead exists as a tetramer in non-neuronal cells and in neurons. Given the possible key role of the ENS in PD pathophysiology, we undertook the current research to characterize the native state of α-synuclein in rat primary culture of ENS and in adult human healthy ENS.
View Article and Find Full Text PDFThe observation showing that Lewy type synucleinopathy (LTS), the pathological hallmark of Parkinson's disease (PD), is found in the gut of almost all PD subjects led to a substantial amount of research to develop a diagnostic procedure in living patients based on endoscopically obtained gastrointestinal biopsies. However, the existing studies have provided conflicting results regarding the sensitivity and specificity of gastrointestinal biopsies for the detection of LTS. We therefore undertook a multi-center staining and blinded judging of a common set of slides from colonic biopsies to determine the optimal protocol for the detection of LTS.
View Article and Find Full Text PDFBackground: Alpha-synuclein containing inclusions in neurons, the characteristic pathological lesions of Parkinson's disease (PD), are not limited to the central nervous system, but also affect the enteric nervous system (ENS). This suggests that the ENS offer some potential as a surrogate of central nervous system pathology and that it may represent an original source of biomarkers for PD. However, the usefulness of α-synuclein detection in gastrointestinal biopsies as a biomarker for PD is still unclear, as the different immunohistochemical methods employed to date have led to conflicting results.
View Article and Find Full Text PDFBackground: The principal components of the enteric nervous system (ENS) are two neuronal networks, the myenteric and submucosal plexus (SMP), which are primarily involved in the regulation of gastrointestinal (GI) motility and secretion, respectively. These two plexus are made up of intrinsic neurons receiving input from the extrinsic sympathetic and parasympathetic innervation of the gut. Both the intrinsic and extrinsic innervations of the gut are affected by Lewy pathology in Parkinson's disease (PD).
View Article and Find Full Text PDFDopamine orchestrates motor behaviour and reward-driven learning. Perturbations of dopamine signalling have been implicated in several neurological and psychiatric disorders, and in drug addiction. The actions of dopamine are mediated in part by the regulation of gene expression in the striatum, through mechanisms that are not fully understood.
View Article and Find Full Text PDFA single administration of cocaine or D-amphetamine produces acute hyperlocomotion and long-lasting increased sensitivity to subsequent injections. This locomotor sensitization reveals the powerful ability of psychostimulants to induce brain plasticity and may participate in the alterations that underlie addiction. We investigated the role of cannabinoid receptor type 1 (CB1-R) in the effects of a single injection of psychostimulants.
View Article and Find Full Text PDFThe extracellular signal-regulated kinases (ERKs) 1/2 pathway is stimulated by drugs of abuse in striatal neurons through coincident activation of dopamine D1 and glutamate NMDA receptors and is critical for long-lasting behavioral effects of these drugs. Although regulation of transcription is a major target of ERK, the precise mechanisms by which it contributes to behavioral alterations is not known. We examined the role of Zif268, an immediate-early gene induced by drugs of abuse under the control of ERK, in behavioral responses to cocaine using knock-in mutant mice in which Zif268 was replaced by LacZ.
View Article and Find Full Text PDFRepeated association of drugs of abuse with context leads to long-lasting behavioral responses that reflect reward-controlled learning and participate in the establishment of addiction. Reactivation of consolidated memories is known to produce a reconsolidation process during which memories undergo a labile state. We investigated whether reexposure to drugs had similar effects.
View Article and Find Full Text PDFd-Amphetamine and methylphenidate are widely used in the treatment of attention-deficit/hyperactivity disorder. Both drugs increase extracellular norepinephrine and dopamine in the prefrontal cortex, where they are believed to exert their therapeutic effects. However, the molecular mechanisms underlying their action are poorly understood.
View Article and Find Full Text PDF