Publications by authors named "Anne-Claire Jacomin"

RNA splicing enables the functional adaptation of cells to changing contexts. Impaired splicing has been associated with diseases, including retinitis pigmentosa, but the underlying molecular mechanisms and cellular responses remain poorly understood. In this work, we report that deficiency of ubiquitin-specific protease 39 (USP39) in human cell lines, zebrafish larvae, and mice led to impaired spliceosome assembly and a cytotoxic splicing profile characterized by the use of cryptic 5' splice sites.

View Article and Find Full Text PDF

The autophagy-lysosome system directs the degradation of a wide variety of cargo and is also involved in tumor progression. Here, we show that the immunity-related GTPase family Q protein (IRGQ), an uncharacterized protein to date, acts in the quality control of major histocompatibility complex class I (MHC class I) molecules. IRGQ directs misfolded MHC class I toward lysosomal degradation through its binding mode to GABARAPL2 and LC3B.

View Article and Find Full Text PDF

The contribution of deubiquitylating enzymes (DUBs) to β-Catenin stabilization in intestinal stem cells and colorectal cancer (CRC) is poorly understood. Here, and by using an unbiassed screen, we discovered that the DUB USP10 stabilizes β-Catenin specifically in APC-truncated CRC in vitro and in vivo. Mechanistic studies, including in vitro binding together with computational modelling, revealed that USP10 binding to β-Catenin is mediated via the unstructured N-terminus of USP10 and is outcompeted by intact APC, favouring β-catenin degradation.

View Article and Find Full Text PDF

The dynamic process of membrane shaping and remodeling plays a vital role in cellular functions, with proteins and cellular membranes interacting intricately to adapt to various cellular needs and environmental cues. Ubiquitination-a posttranslational modification-was shown to be essential in regulating membrane structure and shape. It influences virtually all pathways relying on cellular membranes, such as endocytosis and autophagy by directing protein degradation, sorting, and oligomerization.

View Article and Find Full Text PDF

Background: The accuracy of blood-based early tumour recognition is compromised by signal production at non-tumoral sites, low amount of signal produced by small tumours, and variable tumour production. Here we examined whether tumour-specific enhancement of vascular permeability by the particular tumour homing peptide, iRGD, which carries dual function of binding to integrin receptors overexpressed in the tumour vasculature and is known to promote extravasation via neuropilin-1 receptor upon site-specific cleavage, might be useful to improve blood-based tumour detection by inducing a yet unrecognised vice versa tumour-to-blood transport.

Methods: To detect an iRGD-induced tumour-to-blood transport, we examined the effect of intravenously injected iRGD on blood levels of α-fetoprotein (AFP) and autotaxin in several mouse models of hepatocellular carcinoma (HCC) or in mice with chronic liver injury without HCC, and on prostate-specific antigen (PSA) levels in mice with prostate cancer.

View Article and Find Full Text PDF

Small ubiquitin-like modifiers from the ATG8 family regulate autophagy initiation and progression in mammalian cells. Their interaction with LC3-interacting region (LIR) containing proteins promotes cargo sequestration, phagophore assembly, or even fusion between autophagosomes and lysosomes. Previously, we have shown that RabGAP proteins from the TBC family directly bind to LC3/GABARAP proteins.

View Article and Find Full Text PDF

Macroautophagy is a ubiquitous homeostasis and health-promoting recycling process of eukaryotic cells, targeting misfolded proteins, damaged organelles and intracellular infectious agents. Some intracellular pathogens such as serovar Typhimurium hijack this process during pathogenesis. Here we investigate potential protein-protein interactions between host transcription factors and secreted effector proteins of and their effect on host gene transcription.

View Article and Find Full Text PDF

Selective autophagy is a catabolic route that turns over specific cellular material for degradation by lysosomes, and whose role in the regulation of innate immunity is largely unexplored. Here, we show that the apical kinase of the Drosophila immune deficiency (IMD) pathway Tak1, as well as its co-activator Tab2, are both selective autophagy substrates that interact with the autophagy protein Atg8a. We also present a role for the Atg8a-interacting protein Sh3px1 in the downregulation of the IMD pathway, by facilitating targeting of the Tak1/Tab2 complex to the autophagy platform through its interaction with Tab2.

View Article and Find Full Text PDF

Autophagy has been described as a catabolic process in which cytoplasmic material is being recycled under various conditions of cellular stress, preventing cell damage and promoting cell survival. Drosophila has been demonstrated to provide an excellent animal model for the study of autophagy. Here, we provide a detailed experimental procedure for the identification of Atg8a interactors, exploiting the iLIR database, followed by the in vitro confirmation of interactions and in situ detection of the respective proteins.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

Hunger drives food-seeking behaviour and controls adaptation of organisms to nutrient availability and energy stores. Lipids constitute an essential source of energy in the cell that can be mobilised during fasting by autophagy. Selective degradation of proteins by autophagy is made possible essentially by the presence of LIR and KFERQ-like motifs.

View Article and Find Full Text PDF

Despite the growing evidence that the macroautophagy/autophagy-related protein LC3 is localized in the nucleus, why and how it is targeted to the nucleus are poorly understood. In our recent study, we found that transcription factor seq (sequoia) interacts via its LIR motif with Atg8a, the homolog of LC3, to negatively regulate the transcription of autophagy genes. Atg8a was found to also interact with the nuclear acetyltransferase complex subunit YL-1 and deacetylase Sirt2.

View Article and Find Full Text PDF

Autophagy is the degradation of cytoplasmic material through the lysosomal pathway. One of the most studied autophagy-related proteins is LC3. Despite growing evidence that LC3 is enriched in the nucleus, its nuclear role is poorly understood.

View Article and Find Full Text PDF

Implication of autophagy in the downregulation of immune signaling pathways through the degradation of their components constitutes an emerging field of investigation. Our work showed that the selective interaction of protein Kenny/IKKγ (CG16910) with the autophagic machinery is required for the degradation of the I-kappa B kinase complex. This regulatory mechanism is essential for the downregulation of the immune deficiency (IMD) pathway in response to commensal microbiota to prevent inflammation.

View Article and Find Full Text PDF

Biometals such as iron, copper, potassium, and zinc are essential regulatory elements of several biological processes. The homeostasis of biometals is often affected in age-related pathologies. Notably, impaired iron metabolism has been linked to several neurodegenerative disorders.

View Article and Find Full Text PDF

Due to the critical role played by autophagy in pathogen clearance, pathogens have developed diverse strategies to subvert it. Despite previous key findings of bacteria-autophagy interplay, asystems-level insight into selective targeting by the host and autophagy modulation by the pathogens is lacking. We predicted potential interactions between human autophagy proteins and effector proteins from 56 pathogenic bacterial species by identifying bacterial proteins predicted to have recognition motifs for selective autophagy receptors SQSTM1/p62, CALCOCO2/NDP52 and MAP1LC3/LC3.

View Article and Find Full Text PDF

Autophagy is a central pathway utilized by many eukaryotic cells in order to recycle intracellular constituents, particularly under periods of nutrient scarcity or cellular damage. The process is evolutionarily conserved from yeast to mammals and can be highly selective with regard to the contents that are targeted for degradation. The availability of Drosophila transgenic lines and fluorophore-labeled autophagic markers allows nowadays for the more effortless visualization of the process within cells.

View Article and Find Full Text PDF

Autophagy is the process by which cytoplasmic components are engulfed in double-membraned vesicles before being delivered to the lysosome to be degraded. Defective autophagy has been linked to a vast array of human pathologies. The molecular mechanism of the autophagic machinery is well-described and has been extensively investigated.

View Article and Find Full Text PDF

Autophagy is an evolutionary conserved catabolic process that allows for the degradation of intracellular components by lysosomes. This process can be triggered by nutrient deprivation, microbial infections or other challenges to promote cell survival under these stressed conditions. However, basal levels of autophagy are also crucial for the maintenance of proper cellular homeostasis by ensuring the selective removal of protein aggregates and dysfunctional organelles.

View Article and Find Full Text PDF

Integration and down-regulation of cell growth and differentiation signals rely on plasma membrane receptor endocytosis and sorting towards either recycling vesicles or degradative lysosomes via multivesicular bodies (MVB). In this process, the endosomal sorting complex-III required for transport (ESCRT-III) controls membrane deformation and scission triggering intraluminal vesicle (ILV) formation at early endosomes. Here, we show that the ESCRT-III member CHMP1B can be ubiquitinated within a flexible loop known to undergo conformational changes during polymerization.

View Article and Find Full Text PDF

Accumulation of ubiquitinated protein aggregates is a hallmark of most aging-related neurodegenerative disorders. Autophagy has been found to be involved in the selective clearance of these protein aggregates, and this process is called aggrephagy. Here we provide two protocols for the investigation of protein aggregation and their removal by autophagy using western blotting and immunofluorescence techniques in Drosophila brain.

View Article and Find Full Text PDF

Selective autophagy is a catabolic process with which cellular material is specifically targeted for degradation by lysosomes. The function of selective autophagic degradation of self-components in the regulation of innate immunity is still unclear. Here we show that Drosophila Kenny, the homolog of mammalian IKKγ, is a selective autophagy receptor that mediates the degradation of the IκB kinase complex.

View Article and Find Full Text PDF

Macroautophagy/autophagy has been shown to mediate the selective lysosomal degradation of pathogenic bacteria and viruses (xenophagy), and to contribute to the activation of innate and adaptative immune responses. Autophagy can serve as an antiviral defense mechanism but also as a proviral process during infection. Atg8-family proteins play a central role in the autophagy process due to their ability to interact with components of the autophagy machinery as well as selective autophagy receptors and adaptor proteins.

View Article and Find Full Text PDF

Background: Lysosomes are the major catabolic compartment within eukaryotic cells, and their biogenesis requires the integration of the biosynthetic and endosomal pathways. Endocytosis and autophagy are the primary inputs of the lysosomal degradation pathway. Endocytosis is specifically needed for the degradation of membrane proteins whereas autophagy is responsible for the degradation of cytoplasmic components.

View Article and Find Full Text PDF