Domestication process effects are manifold, affecting genotype and phenotype, and assumed to be universal in animals by part of the scientific community. While mammals and birds have been thoroughly investigated, from taming to intensive selective breeding, fish domestication remains comparatively unstudied. The most widely bred and traded ornamental fish species worldwide, the goldfish, underwent the effect of long-term artificial selection on differing skeletal and soft tissue modules through ornamental domestication.
View Article and Find Full Text PDFThe morphological adaptations of euprimates have been linked to their origin and early evolution in an arboreal environment. However, the ancestral and early locomotor repertoire of this group remains contentious. Although some tarsal bones like the astragalus and the calcaneus have been thoroughly studied, the navicular remains poorly studied despite its potential implications for foot mobility.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
July 2023
The placental skull has evolved into myriad forms, from longirostrine whales to globular primates, and with a diverse array of appendages from antlers to tusks. This disparity has recently been studied from the perspective of the whole skull, but the skull is composed of numerous elements that have distinct developmental origins and varied functions. Here, we assess the evolution of the skull's major skeletal elements, decomposed into 17 individual regions.
View Article and Find Full Text PDFVertebrate limb morphology often reflects the environment due to variation in locomotor requirements. However, proximal and distal limb segments may evolve differently from one another, reflecting an anatomical gradient of functional specialization that has been suggested to be impacted by the timing of development. Here, we explore whether the temporal sequence of bone condensation predicts variation in the capacity of evolution to generate morphological diversity in proximal and distal forelimb segments across more than 600 species of mammals.
View Article and Find Full Text PDFThe Cenozoic diversification of placental mammals is the archetypal adaptive radiation. Yet, discrepancies between molecular divergence estimates and the fossil record fuel ongoing debate around the timing, tempo, and drivers of this radiation. Analysis of a three-dimensional skull dataset for living and extinct placental mammals demonstrates that evolutionary rates peak early and attenuate quickly.
View Article and Find Full Text PDFPhenotypictraits have been shown to evolve in response to variation in the environment. However, the evolutionary processes underlying the emergence of phenotypic diversity can typically only be understood at the population level. Consequently, how subtle phenotypic differences at the intraspecific level can give rise to larger-scale changes in performance and ecology remains poorly understood.
View Article and Find Full Text PDFHabitat is one of the most important factors shaping organismal morphology, but it may vary across life history stages. Ontogenetic shifts in ecology may introduce antagonistic selection that constrains adult phenotype, particularly with ecologically distinct developmental phases such as the free-living, feeding larval stage of many frogs (Lissamphibia: Anura). We test the relative influences of developmental and ecological factors on the diversification of adult skull morphology with a detailed analysis of 15 individual cranial regions across 173 anuran species, representing every extant family.
View Article and Find Full Text PDFDifferences in jaw function experienced through ontogeny can have striking consequences for evolutionary outcomes, as has been suggested for the major clades of mammals. By contrast to placentals, marsupial newborns have an accelerated development of the head and forelimbs, allowing them to crawl to the mother's teats to suckle within just a few weeks of conception. The different functional requirements that marsupial newborns experience in early postnatal development have been hypothesized to have constrained their morphological diversification relative to placentals.
View Article and Find Full Text PDFThe skeleton is a complex arrangement of anatomical structures that covary to various degrees depending on both intrinsic and extrinsic factors. Among the Feliformia, many species are characterized by predator lifestyles providing a unique opportunity to investigate the impact of highly specialized hypercarnivorous diet on phenotypic integration and shape diversity. To do so, we compared the shape of the skull, mandible, humerus, and femur of species in relation to their feeding strategies (hypercarnivorous vs.
View Article and Find Full Text PDFMetamorphosis is widespread across the animal kingdom and induces fundamental changes in the morphology, habitat and resources used by an organism during its lifetime. Metamorphic species are likely to experience more dynamic selective pressures through ontogeny compared with species with single-phase life cycles, which may drive divergent evolutionary dynamics. Here, we reconstruct the cranial evolution of the salamander using geometric morphometric data from 148 species spanning the order's full phylogenetic, developmental and ecological diversity.
View Article and Find Full Text PDFEvolutionary integration (covariation) of traits has long fascinated biologists because of its potential to elucidate factors that have shaped morphological evolution. Studies of tetrapod crania have identified patterns of evolutionary integration that reflect functional or developmental interactions among traits, but no studies to date have sampled widely across the species-rich lissamphibian order Anura (frogs). Frogs exhibit a vast range of cranial morphologies, life history strategies, and ecologies.
View Article and Find Full Text PDFExtreme climate events such as droughts, cold snaps, and hurricanes can be powerful agents of natural selection, producing acute selective pressures very different from the everyday pressures acting on organisms. However, it remains unknown whether these infrequent but severe disruptions are quickly erased by quotidian selective forces, or whether they have the potential to durably shape biodiversity patterns across regions and clades. Here, we show that hurricanes have enduring evolutionary impacts on the morphology of anoles, a diverse Neotropical lizard clade.
View Article and Find Full Text PDFAccess to resources is a dynamic and multicausal process that determines the success and survival of a population. It is therefore often challenging to disentangle the factors affecting ecological traits like diet. Insular habitats provide a good opportunity to study how variation in diet originates, in particular in populations of mesopredators such as lizards.
View Article and Find Full Text PDFManual grasping is widespread among tetrapods but is more prominent and dexterous in primates. Whether the selective pressures that drove the evolution of dexterous hand grasping involved the collection of fruit or predation on mobile insects remains an area of debate. One way to explore this question is to examine preferences for manual versus oral grasping of a moving object.
View Article and Find Full Text PDFBoth environmental temperatures and spatial heterogeneity can profoundly affect the biology of ectotherms. In lizards, thermoregulation may show high plasticity and may respond to environmental shifts. In the context of global climate change, lizards showing plastic thermoregulatory responses may be favored.
View Article and Find Full Text PDFFactors intrinsic and extrinsic to organisms dictate the course of morphological evolution but are seldom considered together in comparative analyses. Among vertebrates, squamates (lizards and snakes) exhibit remarkable morphological and developmental variations that parallel their incredible ecological spectrum. However, this exceptional diversity also makes systematic quantification and analysis of their morphological evolution challenging.
View Article and Find Full Text PDFThe field of comparative morphology has entered a new phase with the rapid generation of high-resolution three-dimensional (3D) data. With freely available 3D data of thousands of species, methods for quantifying morphology that harness this rich phenotypic information are quickly emerging. Among these techniques, high-density geometric morphometric approaches provide a powerful and versatile framework to robustly characterize shape and phenotypic integration, the covariances among morphological traits.
View Article and Find Full Text PDFThe evolution of flight in birds involves (i) decoupling of the primitive mode of quadrupedal locomotor coordination, with a new synchronized flapping motion of the wings while conserving alternating leg movements, and (ii) reduction of wing digits and loss of functional claws. Our observations show that hoatzin nestlings move with alternated walking coordination of the four limbs using the mobile claws on their wings to anchor themselves to the substrate. When swimming, hoatzin nestlings use a coordinated motion of the four limbs involving synchronous or alternated movements of the wings, indicating a versatile motor pattern.
View Article and Find Full Text PDFSciuromorph rodents are a monophyletic group comprising about 300 species with a body mass range spanning three orders of magnitude and various locomotor behaviors that we categorized into arboreal, fossorial and aerial. The purpose of this study was to investigate how the interplay of locomotor ecology and body mass affects the morphology of the sciuromorph locomotor apparatus. The most proximal skeletal element of the hind limb, i.
View Article and Find Full Text PDFObjectives: In this study, we explore whether ground reaction forces recorded during horizontal walking co-vary with the shape of the long bones of the forelimb in strepsirrhines. To do so, we quantify (1) the shape of the shaft and articular surfaces of each long bone of the forelimb, (2) the peak vertical, mediolateral, and horizontal ground reaction forces applied by the forelimb during arboreal locomotion, and (3) the relationship between the shape of the forelimb and peak forces.
Materials And Methods: Geometric morphometric approaches were used to quantify the shape of the bones.
Tendon collagen fibrils are the basic force-transmitting units of the tendon. Yet, surprisingly little is known about the diversity in tendon anatomy and ultrastructure, and the possible relationships between this diversity and locomotor modes utilized. Our main objectives were to investigate: (a) the ultra-structural anatomy of the tendons in the digits of frogs; (b) the diversity of collagen fibril diameters across frogs with different locomotor modes; (c) the relationship between morphology, as expressed by the morphology of collagen fibrils and tendons, and locomotor modes.
View Article and Find Full Text PDFLizards are an interesting group to study how habitat use impacts the morphology of the forelimb because they occupy a great diversity of ecological niches. In this study, we specifically investigated whether habitat use impacts the morphology of the forelimb flexor muscles in lizards. To do so, we performed dissections and quantified the physiological cross sectional area (PCSA), the fiber length, and the mass of four flexor muscles in 21 different species of lizards.
View Article and Find Full Text PDFArboreal locomotion imposes selective pressures that may affect the evolution of the locomotor apparatus. The limbs have to be mobile to reach across discontinuities, yet at the same time need to be forceful to move against gravity during climbing. However, as intermediaries between the arboreal and terrestrial environment, semi-arboreal mammals appear not extremely specialized and, thus, anatomical adaptations may be less evident than expected for arboreal climbers.
View Article and Find Full Text PDF