Publications by authors named "Anne-Christine Brunet"

The evolutionary emergence of the primitive gut in Metazoa is one of the decisive events that conditioned the major evolutionary transition, leading to the origin of animal development. It is thought to have been induced by the specification of the endomesoderm (EM) into the multicellular tissue and its invagination (i.e.

View Article and Find Full Text PDF

The modulation of developmental biochemical pathways by mechanical cues is an emerging feature of animal development, but its evolutionary origins have not been explored. Here we show that a common mechanosensitive pathway involving β-catenin specifies early mesodermal identity at gastrulation in zebrafish and Drosophila. Mechanical strains developed by zebrafish epiboly and Drosophila mesoderm invagination trigger the phosphorylation of β-catenin-tyrosine-667.

View Article and Find Full Text PDF

During Drosophila gastrulation, two waves of constriction occur in the apical ventral cells, leading to mesoderm invagination. The first constriction wave is a stochastic process mediated by the constriction of 40% of randomly positioned mesodermal cells and is controlled by the transcription factor Snail. The second constriction wave immediately follows and involves the other 60% of the mesodermal cells.

View Article and Find Full Text PDF

We investigated the modulation of critical transcriptional steps of C2C12 myoblast/osteoblast transdifferentiation triggered by the bone morphogenetic protein 2 (BMP2) signaling protein, in response to epigenetic inhibition of the endocytotic internalization of exogenous BMP2. BMP2 endocytosis was inhibited chemically with polyethylene glycol-50 (PEG-Chol) and cyclodextrin and mechanically by mild hyposmotic treatment. BMP2-dependent nuclear translocation of the mother against Dpp (Smad1) transcription factor was ten times faster if BMP2 endocytosis was inhibited.

View Article and Find Full Text PDF