Stud Health Technol Inform
August 2024
Multi-objective optimization holds particular significance for medical applications, wherein enhancing sensitivity is crucial to avoid costly missed diagnoses, and maintaining high specificity is imperative to prevent unnecessary procedures. In particular, when optimizing machine learning architectures for clinical diagnostics, it becomes essential to balance target quality measures such as accuracy, sensitivity, and specificity. Therefore, we developed MOOF, a multi-objective optimization framework that employs NSGA-II and TOPSIS to simultaneously optimize the model parameters of three selected ML algorithms: random forest, support vector machine, and multilayer perceptron.
View Article and Find Full Text PDF