Publications by authors named "Anne-Charlotte Bernard"

In tumours, accumulation of chemoresistant cells that express high levels of anti-apoptotic proteins such as BCL-X is thought to result from the counter selection of sensitive, low expresser clones during progression and/or initial treatment. We herein show that BCL-X expression is selectively advantageous to cancer cell populations even in the absence of pro-apoptotic pressure. In transformed human mammary epithelial cells BCL-X favours full activation of signalling downstream of constitutively active RAS with which it interacts in a BH4-dependent manner.

View Article and Find Full Text PDF

Activated in response to chemotherapy, senescence is a tumor suppressive mechanism that induces a permanent loss of proliferation. However, in response to treatment, it is not really known how cells can escape senescence and how irreversible or incomplete this pathway is. We have recently described that cells that escape senescence are more transformed than non-treated parental cells, they resist anoikis and rely on Mcl-1.

View Article and Find Full Text PDF

Induction of senescence by chemotherapy was initially characterized as a suppressive response that prevents tumor cell proliferation. However, in response to treatment, it is not really known how cells can survive senescence and how irreversible this pathway is. In this study, we analyzed cell escape in response to irinotecan, a first line treatment used in colorectal cancer that induced senescence.

View Article and Find Full Text PDF

Abstract Cytotoxic agents, alone or in combination, are being used in the treatment of colorectal cancer. Despite progress in the therapeutic regimes, this common malignancy is still the cause of considerable morbidity and mortality, and further improvements are required. Cancer cells often exhibit intrinsic resistance against chemotherapeutic agents or they develop resistance over the time of treatment.

View Article and Find Full Text PDF

Oncogene-induced senescence (OIS) is a tumor suppressor response that induces permanent cell cycle arrest in response to oncogenic signaling. Through the combined activation of the p53-p21 and p16-Rb suppressor pathways, OIS leads to the transcriptional repression of proliferative genes. Although this protective mechanism has been essentially described in primary cells, we surprisingly observed in this study that the OIS program is conserved in established colorectal cell lines.

View Article and Find Full Text PDF

The STAT3 transcription factors are cytoplasmic proteins that induce gene activation in response to growth factor stimulation. Following tyrosine phosphorylation, STAT3 proteins dimerize, translocate to the nucleus, and activate specific target genes involved in cell-cycle progression. Despite its importance in cancer cells, the molecular mechanisms by which this protein is regulated in response to DNA damage remain to be characterized.

View Article and Find Full Text PDF