The poor correlation of developmental toxicity studies in animals with human outcome data has emphasized the need for complementary assays based on human cells and tissues. As neural tube defects represent an important proportion of congenital malformations, we evaluated here the accuracy of a human embryonic stem cell (hESC)-based assay to predict chemically induced disruption of neural tube formation. As teratogenic compounds, we used cyclopamine (CPA), valproic acid (VPA), ochratoxin A (OTA) and mycophenolic acid (MMF), all suspected or known inducers of human neural tube defects, as well as theophylline and saccharin as negative control compounds.
View Article and Find Full Text PDFIn hair follicles, dermal papilla (DP) and dermal sheath (DS) cells exhibit striking levels of plasticity, as each can regenerate both cell types. Here, we show that thrombin induces a phosphoinositide 3-kinase (PI3K)-Akt pathway-dependent acquisition of DS-like properties by DP cells in vitro, involving increased proliferation rate, acquisition of ;myofibroblastic' contractile properties and a decreased capacity to sustain growth and survival of keratinocytes. The thrombin inhibitor protease nexin 1 [PN-1, also known as SERPINE2) regulates all those effects in vitro.
View Article and Find Full Text PDFThe synthesis, transport, and insertion of jimpy proteolipid protein and DM20 were studied in normal (158N) and jimpy (158JP) immortalized oligodendrocyte lines. Four different expression vectors encoding fusion proteins composed of native PLP and DM20 or jimpy PLP or DM20 were linked to enhanced green fluorescent protein (EGFP). All four transfected fusion proteins had similar distributions in the cell bodies and processes of the two cell types.
View Article and Find Full Text PDF