Unlabelled: Neuronal degeneration represents a pathogenetic hallmark after different brain insults, such as ischemia and status epilepticus (SE). Excessive release of glutamate triggered by pathophysiologic synaptic activity has been put forward as key mechanism in this context. In response to pathophysiologic synaptic activity, multiple signaling cascades are activated that ultimately initiate expression of specific sets of genes, which may decide between neuronal survival versus death.
View Article and Find Full Text PDFUnlabelled: Dendritic voltage-gated ion channels profoundly shape the integrative properties of neuronal dendrites. In epilepsy, numerous changes in dendritic ion channels have been described, all of them due to either their altered transcription or phosphorylation. In pilocarpine-treated chronically epileptic rats, we describe a novel mechanism that causes an increased proximal dendritic persistent Na(+) current (INaP).
View Article and Find Full Text PDFTo ensure operation of synaptic transmission within an appropriate dynamic range, neurons have evolved mechanisms of activity-dependent plasticity, including changes in presynaptic efficacy. The multidomain protein RIM1α is an integral component of the cytomatrix at the presynaptic active zone and has emerged as key mediator of presynaptically expressed forms of synaptic plasticity. We have therefore addressed the role of RIM1α in aberrant cellular plasticity and structural reorganization after an episode of synchronous neuronal activity pharmacologically induced in vivo [status epilepticus (SE)].
View Article and Find Full Text PDFBackground: Chloride currents in peripheral nociceptive neurons have been implicated in the generation of afferent nociceptive signals, as Cl- accumulation in sensory endings establishes the driving force for depolarizing, and even excitatory, Cl- currents. The intracellular Cl- concentration can, however, vary considerably between individual DRG neurons. This raises the question, whether the contribution of Cl- currents to signal generation differs between individual afferent neurons, and whether the specific Cl- levels in these neurons are subject to modulation.
View Article and Find Full Text PDF