Publications by authors named "Anne Weston"

Toxoplasma gondii secretes protein effectors to subvert the human immune system sufficiently to establish a chronic infection. Relative to murine infections, little is known about which parasite effectors disarm human immune responses. Here, we used targeted CRISPR screening to identify secreted protein effectors required for parasite survival in IFNγ-activated human cells.

View Article and Find Full Text PDF

Decreased left ventricle (LV) function caused by genetic mutations or injury often leads to debilitating and fatal cardiovascular disease. LV cardiomyocytes are, therefore, a potentially valuable therapeutical target. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are neither homogeneous nor functionally mature, which reduces their utility.

View Article and Find Full Text PDF

Cell-cell junctions are dynamic structures that maintain cell cohesion and shape in epithelial tissues. During development, junctions undergo extensive rearrangements to drive the epithelial remodelling required for morphogenesis. This is particularly evident during axis elongation, where neighbour exchanges, cell-cell rearrangements and oriented cell divisions lead to large-scale alterations in tissue shape.

View Article and Find Full Text PDF

Advancements in volume electron microscopy mean it is now possible to generate thousands of serial images at nanometre resolution overnight, yet the gold standard approach for data analysis remains manual segmentation by an expert microscopist, resulting in a critical research bottleneck. Although some machine learning approaches exist in this domain, we remain far from realizing the aspiration of a highly accurate, yet generic, automated analysis approach, with a major obstacle being lack of sufficient high-quality ground-truth data. To address this, we developed a novel citizen science project, Etch a Cell, to enable volunteers to manually segment the nuclear envelope (NE) of HeLa cells imaged with serial blockface scanning electron microscopy.

View Article and Find Full Text PDF

The quantitative study of cell morphology is of great importance as the structure and condition of cells and their structures can be related to conditions of health or disease. The first step towards that, is the accurate segmentation of cell structures. In this work, we compare five approaches, one traditional and four deep-learning, for the semantic segmentation of the nuclear envelope of cervical cancer cells commonly known as HeLa cells.

View Article and Find Full Text PDF

Intestinal failure, following extensive anatomical or functional loss of small intestine, has debilitating long-term consequences for children. The priority of patient care is to increase the length of functional intestine, particularly the jejunum, to promote nutritional independence. Here we construct autologous jejunal mucosal grafts using biomaterials from pediatric patients and show that patient-derived organoids can be expanded efficiently in vitro.

View Article and Find Full Text PDF

Signalling by target-derived neurotrophins is essential for the correct development of the nervous system and its maintenance throughout life. Several aspects concerning the lifecycle of neurotrophins and their receptors have been characterised over the years, including the formation, endocytosis and trafficking of signalling-competent ligand-receptor complexes. However, the molecular mechanisms directing the sorting of activated neurotrophin receptors are still elusive.

View Article and Find Full Text PDF

This paper describes an unsupervised algorithm, which segments the nuclear envelope of HeLa cells imaged by Serial Block Face Scanning Electron Microscopy. The algorithm exploits the variations of pixel intensity in different cellular regions by calculating edges, which are then used to generate superpixels. The superpixels are morphologically processed and those that correspond to the nuclear region are selected through the analysis of size, position, and correspondence with regions detected in neighbouring slices.

View Article and Find Full Text PDF

Direct investigation of the early cellular changes induced by metastatic cells within the surrounding tissue remains a challenge. Here we present a system in which metastatic cancer cells release a cell-penetrating fluorescent protein, which is taken up by neighbouring cells and enables spatial identification of the local metastatic cellular environment. Using this system, tissue cells with low representation in the metastatic niche can be identified and characterized within the bulk tissue.

View Article and Find Full Text PDF

This study explored the regenerative osteogenic response in the distal femur of sheep using scaffolds having stiffness values within, and above and below, the range of trabecular bone apparent modulus. Scaffolds 3D-printed from stiff titanium and compliant polyamide were implanted into a cylindrical metaphyseal defect 15 × 15 mm. After six weeks, bone ingrowth varied between 7 and 21% of the scaffold pore volume and this was generally inversely proportional to scaffold stiffness.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) promote tumour invasion and metastasis. We show that CAFs exert a physical force on cancer cells that enables their collective invasion. Force transmission is mediated by a heterophilic adhesion involving N-cadherin at the CAF membrane and E-cadherin at the cancer cell membrane.

View Article and Find Full Text PDF

The processes of life take place in multiple dimensions, but imaging these processes in even three dimensions is challenging. Here, we describe a workflow for 3D correlative light and electron microscopy (CLEM) of cell monolayers using fluorescence microscopy to identify and follow biological events, combined with serial blockface scanning electron microscopy to analyse the underlying ultrastructure. The workflow encompasses all steps from cell culture to sample processing, imaging strategy, and 3D image processing and analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Sporadic inclusion body myositis (sIBM) is the most common severe muscle disease in people over 50, and previous treatments targeting inflammation have not been successful.
  • Researchers tested a new approach targeting protein dyshomeostasis using arimoclomol, which showed promise in lab cultures and mutant mice by reducing disease markers and improving muscle function.
  • A clinical trial with sIBM patients indicated that arimoclomol was safe and well tolerated, but it did not show significant efficacy in improving the condition compared to a placebo.
View Article and Find Full Text PDF

Advances in mechanistic knowledge of human neurological disorders have been hindered by the lack of adequate human in vitro models. Three-dimensional (3D) cellular models displaying higher biological relevance are gaining momentum; however, their lack of robustness and scarcity of analytical tools adapted to three dimensions hampers their widespread implementation. Herein we show that human midbrain-derived neural progenitor cells, cultured as 3D neurospheres in stirred culture systems, reproducibly differentiate into complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes.

View Article and Find Full Text PDF

Cryo-soft X-ray tomography (cryo-SXT) is a powerful imaging technique that can extract ultrastructural information from whole, unstained mammalian cells as close to the living state as possible. Subcellular organelles including the nucleus, the Golgi apparatus and mitochondria have been identified by morphology alone, due to the similarity in contrast to transmission electron micrographs. In this study, we used cryo-SXT to image endosomes and autophagosomes, organelles that are particularly susceptible to chemical fixation artefacts during sample preparation for electron microscopy.

View Article and Find Full Text PDF

Planar cell polarity (PCP) signaling controls tissue morphogenesis by coordinating collective cell behaviors. We show a critical role for the core PCP proteins Celsr1 and Vangl2 in the complex morphogenetic process of intraluminal valve formation in lymphatic vessels. We found that valve-forming endothelial cells undergo elongation, reorientation, and collective migration into the vessel lumen as they initiate valve leaflet formation.

View Article and Find Full Text PDF

Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture.

View Article and Find Full Text PDF

The structure of the monolayer formed at an air/water interface by the phospholipid distearoylphosphatidylcholine (DSPC) has been determined as a function of the monolayer surface pressure (pi) using Brewster angle microscopy and neutron reflectivity. The microscopy studies demonstrate that the DSPC molecules form an extremely homogeneous monolayer on the water surface with no evidence of any domain formation. The neutron reflectivity measurements provide information on the thickness of the DSPC alkyl chains, head groups, and associated solvent distributions, along with the separations between these distributions and the interfacial area per molecule.

View Article and Find Full Text PDF

Dysfunction of lymphatic valves underlies human lymphedema, yet the process of valve morphogenesis is poorly understood. Here, we show that during embryogenesis, lymphatic valve leaflet formation is initiated by upregulation of integrin-alpha9 expression and deposition of its ligand fibronectin-EIIIA (FN-EIIIA) in the extracellular matrix. Endothelial cell-specific deletion of Itga9 (encoding integrin-alpha9) in mouse embryos results in the development of rudimentary valve leaflets characterized by disorganized FN matrix, short cusps, and retrograde lymphatic flow.

View Article and Find Full Text PDF

Axonal transport is responsible for the movement of signals and cargo between nerve termini and cell bodies. Pathogens also exploit this pathway to enter and exit the central nervous system. In this study, we characterised the binding, endocytosis and axonal transport of an adenovirus (CAV-2) that preferentially infects neurons.

View Article and Find Full Text PDF

Snake presynaptic phospholipase A2 neurotoxins (SPANs) bind to the presynaptic membrane and hydrolyze phosphatidylcholine with generation of lysophosphatidylcholine (LysoPC) and fatty acid (FA). The LysoPC+FA mixture promotes membrane fusion, inducing the exocytosis of the ready-to-release synaptic vesicles. However, also the reserve pool of synaptic vesicles disappears from nerve terminals intoxicated with SPAN or LysoPC+FA.

View Article and Find Full Text PDF

Hereditary spastic paraplegias (HSPs) are neurodegenerative diseases caused by mutations in more than 20 genes, which lead to progressive spasticity and weakness of the lower limbs. The most frequently mutated gene causing autosomal dominant HSP is SPG4, which encodes spastin, a protein that belongs to the family of ATPases associated with various cellular activities (AAAs). A number of studies have suggested that spastin regulates microtubule dynamics.

View Article and Find Full Text PDF

The mechanisms of action of four snake presynaptic phospholipase A2 neurotoxins were investigated in cultured neurons isolated from various parts of the rat brain. Strikingly, physiological concentrations of notexin, beta-bungarotoxin, taipoxin or textilotoxin induced a dose-dependent formation of discrete bulges at various sites of neuronal projections. Neuronal bulging was paralleled by the redistribution of the two synaptic vesicle markers synaptophysin I (SypI) and vesicle-attached membrane protein 2 (VAMP2) to the bulges, and by the exposure of the luminal domain of synaptotagmin on the cell surface.

View Article and Find Full Text PDF