Publications by authors named "Anne W Hamburger"

We explored whether the anti-prostate cancer (PC) activity of the androgen receptor-axis-targeted agents (ARATs) abiraterone and enzalutamide is enhanced by metformin. Using complementary biological and molecular approaches, we determined the associated underlying mechanisms in pre-clinical androgen-sensitive PC models. ARATs increased androgren receptors (ARs) in LNCaP and AR/ARv7 (AR variant) in VCaP cells, inhibited cell proliferation in both, and induced poly(ADP-ribose) polymerase-1 (PARP-1) cleavage and death in VCaP but not LNCaP cells.

View Article and Find Full Text PDF

Although microRNA (miR) 199a-3p functions as a tumor suppressor in multiple malignancies, its expression and role in esophageal cancer have not been studied. Based on our previous observation that miR-199a-3p is markedly downregulated in esophageal cancer cell lines relative to esophageal epithelial cells, we examined the function of miR-199a-3p in these cells. MiR-199a-3p is predicted to bind with high affinity to the mRNA of p21 activated kinase 4 (PAK4).

View Article and Find Full Text PDF

Although ErbB receptors have been implicated in prostate cancer progression, ErbB-directed drugs have not proven effective for prostate cancer treatment. The ErbB3-binding protein EBP1 affects both ErbB2 and androgen receptor signaling, two components of the response to ErbB-targeted therapies. We therefore examined the effects of EBP1 expression on the response to the ErbB1/2 tyrosine kinase inhibitor lapatinib.

View Article and Find Full Text PDF

Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil, an effective immunosuppressive drug. Both MPA and mycophenolate mofetil are highly specific inhibitors of guanine nucleotide synthesis and of T-cell activation. However, the mechanism by which guanine nucleotide depletion suppresses T-cell activation is unknown.

View Article and Find Full Text PDF

Phosphorylated cyclic-AMP (cAMP) response element binding protein (p-CREB) is a downstream effector of a variety of important signaling pathways. We investigated whether the human BCRP promoter contains a functional cAMP response element (CRE). 8Br-cAMP, a cAMP analogue, increased the activity of a BCRP promoter reporter construct and BCRP mRNA in human carcinoma cells.

View Article and Find Full Text PDF

Despite the importance of the ErbB2/3 heterodimer in breast cancer progression, the negative regulation of these receptors is still poorly understood. We demonstrate here for the first time that the ErbB3/4 ligand heregulin (HRG) reduced both ErbB2 and ErbB3 mRNA and protein levels in human breast cancer cell lines. In contrast, EGFR levels were unaffected by HRG treatment.

View Article and Find Full Text PDF

Ectopic expression of EBP1, an ErbB3-interacting protein, reduces the expression of the ErbB2 protein and mRNA. However, the mechanism of EBP1-induced decrease in ErbB2 mRNA levels has not yet been determined. Since EBP1 affects both transcriptional and post-transcriptional processes, we evaluated the ability of EBP1 to regulate ErbB2 transcription and RNA stability.

View Article and Find Full Text PDF

Background: Therapies that inhibit androgen receptor (AR) are needed for treatment of castration-resistant prostate cancer (CRPC). The ErbB3 binding protein 1 (EBP1) reduces protein expression of both AR and its target genes in CRPC. Although EBP1 regulates AR in hormone-sensitive prostate cancer cells, by both destabilizing AR mRNA and inhibiting protein translation, the mechanism of EBP1 down regulation of AR in CRPC is unknown.

View Article and Find Full Text PDF

The ErbB2/3 heterodimer plays a critical role in breast cancer progression and in the development of endocrine resistance. EBP1, an ErbB3 binding protein, inhibits HRG-stimulated breast cancer growth, decreases ErbB2 protein levels and contributes to tamoxifen sensitivity. We report here that ectopic expression of EBP1 in Estrogen Receptor (ER) positive breast cancers that express ErbB2 at both high and low levels decreased ErbB2 protein levels.

View Article and Find Full Text PDF

Androgen receptor (AR)-mediated pathways play a critical role in the development and progression of prostate cancer. However, little is known about the regulation of AR mRNA stability and translation, two central processes that control AR expression. The ErbB3 binding protein 1 (EBP1), an AR corepressor, negatively regulates crosstalk between ErbB3 ligand heregulin (HRG)-triggered signaling and the AR axis, affecting biological properties of prostate cancer cells.

View Article and Find Full Text PDF

In our previous studies using human LNCaP xenografts and TRAMP (transgenic adenocarcinoma of mouse prostate) mice, androgen deprivation therapy (ADT) resulted in a temporary cessation of prostate cancer (PCa) growth, but then tumors grew faster with more malignant behaviour. To understand whether cancer stem cells might play a role in PCa progression in these animal models, we investigated the expressions of stem cell-related markers in tumors at different time points after ADT. In both animal models, enhanced expressions of stem cell markers were observed in tumors of castrated mice, as compared to non-castrated controls.

View Article and Find Full Text PDF

Dysregulation of the developmental gene anterior gradient protein 2 (AGR2) has been associated with a metastatic phenotype, but its mechanism of action and control in prostate cancers is unknown. In this study, we show that overexpression of AGR2 promotes the motility and invasiveness of nonmetastatic LNCaP tumor cells, whereas silencing of AGR2 in the metastatic derivative C4-2B blocks invasive behavior. ErbB3 binding protein 1 (EBP1), a putative repressor of AGR2, is attenuated in prostate cancer.

View Article and Find Full Text PDF

Background: The ErbB3 binding protein-1 (Ebp1) belongs to a family of DNA/RNA binding proteins implicated in cell growth, apoptosis and differentiation. However, the physiological role of Ebp1 in the whole organism is not known. Therefore, we generated Ebp1-deficient mice carrying a gene trap insertion in intron 2 of the Ebp1 (pa2g4) gene.

View Article and Find Full Text PDF

Aberrant activation of the androgen receptor (AR) by the ErbB2/ErbB3 heterodimer contributes to the development of hormone resistance in prostate cancer. EBP1, an ErbB3-binding protein, acts as an AR corepressor. As EBP1 is decreased in preclinical models of hormone-refractory prostate cancer, we studied the expression of EBP1 in human prostate cancer.

View Article and Find Full Text PDF

An increasingly important role for the ErbB3 receptor in the genesis and progression of breast cancer is emerging. ErbB3 is frequently overexpressed in breast cancer and coexpression of ErbB2/3 is a poor prognostic indicator. ErbB3 has also been implicated in the development of resistance to antiestrogens such as tamoxifen and ErbB tyrosine kinase inhibitors such as gefitinib.

View Article and Find Full Text PDF

The ErbB2/3 heterodimer plays a critical role in breast cancer genesis and progression. EBP1, an ErbB3 binding protein, inhibits breast cancer growth but its effects on ErbB3 ligand mediated signal transduction or ErbB receptors is not known. We report here that ectopic expression of EBP1 in MCF-7 and AU565 breast cancer cell lines inhibited HRG-induced proliferation.

View Article and Find Full Text PDF

The concept of individualized cancer chemotherapy emerged three decades ago from the observation that a small fraction of cells in primary tumors can form colonies in soft agar similar to stem cells of the hematopoietic system. In a series of retrospective and prospective clinical studies, clonogenic tumor growth and effects of anticancer agents on the putative cancer stem cells were assessed as predictive factors. The results of these trials showed that clonogenic growth is associated with poor outcome and drug resistance.

View Article and Find Full Text PDF

Ebp1 is an ErbB3 binding phosphoprotein with pleiotropic effects. Overexpression of Ebp1 represses transcription of E2F1 responsive cell cycle regulated genes and inhibits cell growth. However, the effect of phosphorylation on Ebp1-mediated transcriptional repression and cell growth inhibition is currently unknown.

View Article and Find Full Text PDF

Ebp1, an ErbB3 binding protein and downstream effector of the ErbB signaling network was shown to be a potent tumor suppressor in breast and prostate adenocarcinomas. We hypothesized that the inhibitory properties of the ebp1 gene could also be beneficial if ectopically expressed in salivary adenoid carcinoma. Salivary adenoid carcinoma cell line (ACC-M) cells were stably transfected with the full-length ebp1 cDNA sequence or the empty expression vector pcDNA3.

View Article and Find Full Text PDF

Plant organ size shows remarkable uniformity within species indicating strong endogenous control. We have identified a plant growth regulatory gene, functionally and structurally homologous to human EBP1. Plant EBP1 levels are tightly regulated; gene expression is highest in developing organs and correlates with genes involved in ribosome biogenesis and function.

View Article and Find Full Text PDF

Akt promotes cell survival through phosphorylation. The physiological functions of cytoplasmic Akt have been well defined, but little is known about the nuclear counterpart. Employing a cell-free apoptotic assay and NGF-treated PC12 nuclear extracts, we purified Ebp1 as a factor, which contributes to inhibition of DNA fragmentation by CAD.

View Article and Find Full Text PDF

Ectopic expression of ebp1, a member of the PA2G4 family, inhibits the proliferation and induces the differentiation of human breast and prostate cancer cell lines. Ebp1 inhibits transcription of E2F1 and androgen receptor regulated genes such as prostate specific antigen (PSA) through its interactions with histone deacetylases (HDACs). To further understand Ebp1's interactions with other components of the transcriptional repression machinery, we examined the association of Ebp1 with the corepressor Sin3A.

View Article and Find Full Text PDF

Down-regulation of the androgen receptor (AR) is being evaluated as an effective therapy for the advanced stages of prostate cancer. We report that Ebp1, a protein identified by its interactions with the ErbB3 receptor, down-regulates expression of AR and AR-regulated genes in the LNCaP prostate cancer cell line. Using microarray analysis, we identified six endogenous AR target genes, including the AR itself, that are down-regulated by ebp1 overexpression.

View Article and Find Full Text PDF

The ErbB3/4 ligand heregulin (HRG) profoundly affects cell growth and differentiation, but its mechanism of action is poorly understood. Ebp1, a protein isolated by its binding to ErbB3, inhibits cell growth and represses transcription of E2F-regulated cell cycle genes. Since Ebp1 shares 38% identity with a Schizosaccharomyces pombe DNA-binding protein, we postulated that Ebp1 could bind E2F consensus elements in an HRG-inducible manner, leading to transcriptional repression.

View Article and Find Full Text PDF

Ebp1, an ErbB3 binding protein that is a member of the proliferation-associated PA2G4 family, inhibits the proliferation and induces the differentiation of human ErbB positive breast and prostate cancer cell lines. Ebp1 binds the tumor suppressor retinoblastoma protein (Rb) both in vivo and in vitro, and Rb and Ebp1 cooperate to inhibit the transcription of the E2F1-regulated cyclin E promoter. We show here that Ebp1 can inhibit the transcription of other E2F-regulated reporter genes and of several endogenous E2F-regulated genes important in cell cycle progression in both Rb positive and Rb null cells.

View Article and Find Full Text PDF