Silicon integrated circuits (ICs) are central to the next-generation miniature active neural implants, whether packaged in soft polymers for flexible bioelectronics or implanted as bare die for neural probes. These emerging applications bring the IC closer to the corrosive body environment, raising reliability concerns, particularly for chronic use. Here, we evaluate the inherent hermeticity of bare die ICs, and examine the potential of polydimethylsiloxane (PDMS), a moisture-permeable elastomer, as a standalone encapsulation material.
View Article and Find Full Text PDFImplanted cortical neuroprosthetics (ICNs) are medical devices developed to replace dysfunctional neural pathways by creating information exchange between the brain and a digital system which can facilitate interaction with the external world. Over the last decade, researchers have explored the application of ICNs for diverse conditions including blindness, aphasia, and paralysis. Both transcranial and endovascular approaches have been used to record neural activity in humans, and in a laboratory setting, high-performance decoding of the signals associated with speech intention has been demonstrated.
View Article and Find Full Text PDFIn neural electrical stimulation, safe stimulation guidelines are essential to deliver efficient treatment while avoiding neural damage and electrode degradation. The widely used Shannon's limit,, gives conditions on the stimulation parameters to avoid neural damage, however, underlying damage mechanisms are not fully understood. Moreover, the translation from bench testing toexperiments still presents some challenges, including the increased polarisation observed, which may influence charge-injection mechanisms.
View Article and Find Full Text PDFThe next generation of surgical robotics is poised to disrupt healthcare systems worldwide, requiring new frameworks for evaluation. However, evaluation during a surgical robot's development is challenging due to their complex evolving nature, potential for wider system disruption and integration with complementary technologies like artificial intelligence. Comparative clinical studies require attention to intervention context, learning curves and standardized outcomes.
View Article and Find Full Text PDFThe increase in regulatory challenges on medical technology developed and deployed in the UK is having a negative impact on innovation. In this paper we show how the limited capacity of Approved and Notified Bodies is one more barrier in the innovation pipeline, that could push more teams to consider applying for FDA approval instead of UKCA marking, potentially limiting how much our patients benefit from the world-leading research undertaken in UK universities.
View Article and Find Full Text PDFPhantoms that mimic healthy or diseased organ properties can complement animal models for surgical planning, training, and medical device development. If urodynamic studies rely on pressure-volume curves to assess lower urinary tract symptoms, there is an unsatisfied need for a bladder phantom that accurately mimics the bladder stretching capabilities and compliant behaviour during physiological filling.We demonstrate the suitability of water-soluble 3D-printed moulds as a versatile method to fabricate accurate phantoms with anatomical structures reconstructed from medical images.
View Article and Find Full Text PDFConductive polymers are of great interest in the field of neural electrodes because of their potential to improve the interfacial properties of electrodes. In particular, the conductive polymer poly (3,4)-ethylenedioxithiophene (PEDOT) has been widely studied for neural applications.This review compares methods for electrodeposition of PEDOT on metal neural electrodes, and analyses the effects of deposition methods on morphology and electrochemical performance.
View Article and Find Full Text PDFThis systematic review and meta-analysis aims to determine whether non-invasive electrical stimulation (ES) is effective at reducing spasticity in people living with spinal cord injury (SCI). PubMed, Web of Science, Scopus and Cochrane Central Register of Controlled Trials databases were searched in April 2022. Primary outcome measures were the Ashworth scale (AS), Modified Ashworth scale (MAS), Pendulum test and the Penn spasm frequency scale (PSFS).
View Article and Find Full Text PDFThe vagus nerve is considered to play a key role in the circadian rhythm. Chronic continuous analysis of the vagus nerve activity could contribute to a better understanding of the role of the vagus nerve in light-dark modulations. This paper presents a continuous analysis of spontaneous vagus nerve activity performed in four rats.
View Article and Find Full Text PDFBackground: Minimally invasive surgical (MIS) techniques are considered the gold standard of surgical interventions, but they have a high environmental cost. With global temperatures rising and unmet surgical needs persisting, this review investigates the carbon and material footprint of MIS and summarizes strategies to make MIS greener.
Methods: The MEDLINE, Embase, and Web of Science databases were interrogated between 1974 and July 2021.
The measurement of birefringence variations related to nerve activity is a promising label-free technique for sensing compound neural action potentials (CNAPs). While widely applied in crustaceans, little is known about its efficiency on mammal peripheral nerves. In this work, birefringence recordings to detect CNAPs, and Stokes parameters measurements were performed in rat and lobster nerves.
View Article and Find Full Text PDFBackground: Gastric electrical stimulation (GES) has been studied for decades as a promising treatment for obesity. Stimulation pulses with fixed amplitude and pulse width are usually applied, but these have limitations with regard to overcoming habituation to GES and inter-subject variation. This study aims to analyze the efficacy of an adaptive GES protocol for reducing food intake and maintaining lean weight in dogs.
View Article and Find Full Text PDFIEEE Trans Med Robot Bionics
November 2021
Total laryngectomy (TL) affects critical functions such as swallowing, coughing and speaking. An artificial, bio-engineered larynx (ABL), operated via myoelectric signals, may improve quality of life for TL patients. To evaluate the efficacy of using surface electromyography (sEMG) as a control signal to predict instances of swallowing, coughing and speaking, sEMG was recorded from submental, intercostal and diaphragm muscles.
View Article and Find Full Text PDFIEEE Trans Med Robot Bionics
August 2021
People who have undergone total laryngectomy typically have difficulties speaking and coughing. Coughing, the protective reflex action where air is rapidly expelled from the lungs to clear the airway, is crucial in everyday life. Insufficiency in coughing can lead to serious chest infections.
View Article and Find Full Text PDFThis article presents a versatile neurostimulation platform featuring a fully implantable multi-channel neural stimulator for chronic experimental studies with freely moving large animal models involving peripheral nerves. The implant is hermetically sealed in a ceramic enclosure and encapsulated in medical grade silicone rubber, and then underwent active tests at accelerated aging conditions at 100°C for 15 consecutive days. The stimulator microelectronics are implemented in a 0.
View Article and Find Full Text PDFA novel electrode anchoring design and its implantation procedure, aiming for a minimally invasive solution for gastric electrical stimulation, are presented. The system comprises an anchor made of a flexible body embedding two needle-shaped electrodes. The electrodes can easily switch from a parallel position - to pierce the stomach - to a diverging position - enabling them to remain firmly anchored into the muscular layer of the stomach.
View Article and Find Full Text PDFTo design and implement a setup foroptical stimulation for exploring the effect of several key parameters (optical power and pulse duration), activation features (threshold, spatial selectivity) and recovery characteristics (repeated stimuli) in peripheral nerves.A nerve chamber allowing ex-vivo electrical and optical stimulation was designed and built. A 1470 nm light source was chosen to stimulate the nerve.
View Article and Find Full Text PDFFinite element modelling has been widely used to understand the effect of stimulation on the nerve fibres. Yet the literature on analysis of spontaneous nerve activity is much scarcer. In this study, we introduce a method based on a finite element model, to analyse spontaneous nerve activity with a typical bipolar electrode recording setup, enabling the identification of spontaneously active fibres.
View Article and Find Full Text PDFWith the ultimate aim of early diagnosis of dementia, a new body balance assessment system with integrated head-mounted display-based virtual reality (VR) has been developed. We hypothesized that people would sway more in anterior-posterior (AP) direction when they were exposed to a VR environment where we intentionally provoked movements in forward and backward directions. A total of 14 healthy older adults (OA) (73.
View Article and Find Full Text PDFStudy Design: A prospective interventional pilot study using within-individual comparisons.
Objectives: To assess the effect of dorsal genital nerve stimulation (DGNS) on urine-storage parameters in participants with spinal cord injury (SCI) and neurogenic detrusor overactivity (NDO) during natural bladder filling.
Setting: The London Spinal Cord Injuries Centre at the Royal National Orthopaedic Hospital, Stanmore, UK.
Objectives: To assess and compare the effect of transcutaneous Dorsal Genital Nerve Stimulation (DGNS), Tibial Nerve Stimulation (TNS), Sacral Nerve Stimulation (SNS), and Spinal Stimulation (SS) on Neurogenic Detrusor Overactivity (NDO) and bladder capacity in people with Spinal Cord Injuries (SCI).
Materials And Methods: Seven male participants with supra-sacral SCI were tested. Standard cystometry (CMG) was performed to assess bladder activity at baseline and with stimulation applied at each site.
Gastrointestinal stimulator implants have recently shown promising results in helping obese patients lose weight. However, to place the implant, the patient currently needs to undergo an invasive surgical procedure. We report a less invasive procedure to stimulate the stomach with a gastrostimulator.
View Article and Find Full Text PDFIn this manuscript, we present two 'Bionic Clicker' systems, the first designed to demonstrate electromyography (EMG) based control systems for educational purposes and the second for research purposes. EMG based control systems pick up electrical signals generated by muscle activation and use these as inputs for controllers. EMG controllers are widely used in prosthetics to control limbs.
View Article and Find Full Text PDF