Drug targeting is a methodology that helps to overcome the side effects of therapeutic molecules. However, insufficient targeting specificity and the on-target/off-site delivery leave much room for improvement in the targeting endeavors. One approach to enhance the specificity of drug targeting is to engineer artificial receptors with recognition ligands not observed in nature.
View Article and Find Full Text PDFThe treatment of implant-associated bacterial infections and biofilms is an urgent medical need and a grand challenge because biofilms protect bacteria from the immune system and harbor antibiotic-tolerant persister cells. This need is addressed herein through an engineering of antibody-drug conjugates (ADCs) that contain an anti-neoplastic drug mitomycin C, which is also a potent antimicrobial against biofilms. The ADCs designed herein release the conjugated drug without cell entry, via a novel mechanism of drug release which likely involves an interaction of ADC with the thiols on the bacterial cell surface.
View Article and Find Full Text PDFThe newest generation of cell-based technologies relies heavily on methods to communicate to the engineered cells using artificial receptors, specifically to deactivate the cells administered to a patient in the event of adverse effects. Herein, artificial synthetic internalizing receptors are engineered that function in mammalian cells in 2D and in 3D and afford targeted, specific intracellular drug delivery with nanomolar potency in the most challenging cell type, namely primary, donor-derived T cells. Receptor design comprises a lipid bilayer anchor for receptor integration into cell membrane and a small xenobiotic molecule as a recognition ligand.
View Article and Find Full Text PDFAlbumin is a highly successful tool of drug delivery providing drastically extended body and blood residence time for the associated cargo, but it only traffics single drug copies at a time. In turn, macromolecular prodrugs (MP) are advantaged in carrying a high drug payload but offering only a modest extension of residence time to the conjugated drugs. In this work, we engineer MP to contain terminal groups that bind to albumin via non-covalent association and reveal that this facile measure affords a significant protraction for the associated polymers.
View Article and Find Full Text PDF