Cockayne syndrome is a neurodegenerative accelerated aging disorder caused by mutations in the CSA or CSB genes. Although the pathogenesis of Cockayne syndrome has remained elusive, recent work implicates mitochondrial dysfunction in the disease progression. Here, we present evidence that loss of CSA or CSB in a neuroblastoma cell line converges on mitochondrial dysfunction caused by defects in ribosomal DNA transcription and activation of the DNA damage sensor poly-ADP ribose polymerase 1 (PARP1).
View Article and Find Full Text PDFThe endothelial cells (ECs) that line the vascular lumen are exposed to a wide variety of environmental stresses, such as hypoxia. Maladaptation to stress in ECs is a key event in the development of cardiovascular disease. Sirtuin 3 (SIRT3) is an NAD+-dependent protein deacetylase that modulates various proteins to control mitochondrial function and metabolism.
View Article and Find Full Text PDFHemodynamic shear stress, the blood flow-generated frictional force acting on the vascular endothelial cells, is essential for endothelial homeostasis under normal physiological conditions. Mechanosensors on endothelial cells detect shear stress and transduce it into biochemical signals to trigger vascular adaptive responses. Among the various shear-induced signaling molecules, reactive oxygen species (ROS) and nitric oxide (NO) have been implicated in vascular homeostasis and diseases.
View Article and Find Full Text PDFFree Radic Biol Med
October 2013
Progressive accumulation of defective mitochondria is a common feature of aged cells. SIRT3 is a NAD(+)-dependent protein deacetylase that regulates mitochondrial function and metabolism in response to caloric restriction and stress. FOXO3 is a direct target of SIRT3 and functions as a forkhead transcription factor to govern diverse cellular responses to stress.
View Article and Find Full Text PDF