Publications by authors named "Anne Schellenberg"

Matrix elasticity guides differentiation of mesenchymal stem cells (MSCs) but it is unclear if these effects are only transient - while the cells reside on the substrate - or if they reflect persistent lineage commitment. In this study, MSCs were continuously culture-expanded in parallel either on tissue culture plastic (TCP) or on polydimethylsiloxane (PDMS) gels of different elasticity to compare impact on replicative senescence, in vitro differentiation, gene expression, and DNA methylation (DNAm) profiles. The maximal number of cumulative population doublings was not affected by matrix elasticity.

View Article and Find Full Text PDF

Background: Tracking of replicative senescence is of fundamental relevance in cellular therapy. Cell preparations - such as mesenchymal stromal cells (MSCs) - undergo continuous changes during culture expansion, which is reflected by impaired proliferation and loss of differentiation potential. This process is associated with epigenetic modifications: during in vitro culture, cells acquire senescence-associated DNA methylation (SA-DNAm) changes at specific sites in the genome.

View Article and Find Full Text PDF

Several applications in tissue engineering require transplantation of cells embedded in appropriate biomaterial scaffolds. Such structures may consist of 3D non-woven fibrous materials whereas little is known about the impact of mesh size, pore architecture and fibre morphology on cellular behavior. In this study, we have developed polyvinylidene fluoride (PVDF) non-woven scaffolds with round, trilobal, or snowflake fibre cross section and different fibre crimp patterns (10, 16, or 28 needles per inch).

View Article and Find Full Text PDF

Long-term culture of mesenchymal stem cells (MSC) has major impact on cellular characteristics and differentiation potential. Numerous clinical trials raise high hopes in regenerative medicine and this necessitates reliable quality control of the cellular products-also with regard to replicative senescence. The maximum number of population doublings before entering the senescent state depends on the cell type, tissue of origin, culture medium as well as cell culture methods.

View Article and Find Full Text PDF

Replicative senescence has fundamental implications on cell morphology, proliferation, and differentiation potential. Here, we describe a simple method to track long-term culture based on continuous DNA-methylation changes at six specific CpG sites. This epigenetic senescence signature can be used as biomarker for various cell types to predict the state of cellular senescence with regard to the number of passages, population doublings, or days of in vitro culture.

View Article and Find Full Text PDF

Background Aims: Mesenchymal stromal cells (MSC) are heterogeneous and only a subset possesses multipotent differentiation potential. It has been proven that long-term culture has functional implications for MSC. However, little is known how the composition of subpopulation changes during culture expansion.

View Article and Find Full Text PDF

Cells in culture undergo replicative senescence. In this study, we analyzed functional, genetic and epigenetic sequels of long-term culture in human mesenchymal stem cells (MSC). Already within early passages the fibroblastoid colony-forming unit (CFU-f) frequency and the differentiation potential of MSC declined significantly.

View Article and Find Full Text PDF

Regeneration after hematopoietic stem cell transplantation (HSCT) depends on enormous activation of the stem cell pool. So far, it is hardly understood how these cells are recruited into proliferation and self-renewal. In this study, we have addressed the question if systemically released factors are involved in activation of hematopoietic stem and progenitor cells (HPC) after autologous HSCT.

View Article and Find Full Text PDF

The composition of mesenchymal stromal cells (MSCs) changes in the course of in vitro culture expansion. Little is known how these cell preparations are influenced by culture media, plating density, or passaging. In this study, we have isolated MSCs from human adipose tissue in culture medium supplemented with either fetal calf serum (FCS) or human platelet lysate (HPL).

View Article and Find Full Text PDF