Biological assembly processes offer inspiration for ordering building blocks across multiple length scales into advanced functional materials. Such bioinspired strategies are attractive for assembling supported catalysts, where shaping and structuring across length scales are essential for their performance but still remain tremendously difficult to achieve. Here, we present a simple bioinspired route toward supported catalysts with tunable activity and selectivity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2015
States of self-stress--tensions and compressions of structural elements that result in zero net forces--play an important role in determining the load-bearing ability of structures ranging from bridges to metamaterials with tunable mechanical properties. We exploit a class of recently introduced states of self-stress analogous to topological quantum states to sculpt localized buckling regions in the interior of periodic cellular metamaterials. Although the topological states of self-stress arise in the linear response of an idealized mechanical frame of harmonic springs connected by freely hinged joints, they leave a distinct signature in the nonlinear buckling behavior of a cellular material built out of elastic beams with rigid joints.
View Article and Find Full Text PDF