The cognitive ecology of pollination is most often studied using simple rewards, yet flowers often contain multiple types of chemically complex rewards, each varying along multiple dimensions of quality. In this review we highlight ways in which reward complexity can impact pollinator cognition, demonstrating the need to consider ecologically realistic rewards to fully understand plant-pollinator interactions. We show that pollinators' reward preferences can be modulated by reward chemistry and the collection of multiple reward types.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2024
As bees' main source of protein and lipids, pollen is critical for their development, reproduction, and health. Plant species vary considerably in the macronutrient content of their pollen, and research in bee model systems has established that this variation both modulates performance and guides floral choice. Yet, how variation in pollen chemistry shapes interactions between plants and bees in natural communities is an open question, essential for both understanding the nutritional dynamics of plant-pollinator mutualisms and informing their conservation.
View Article and Find Full Text PDFNeonicotinoid pesticides are well-known for their sublethal effects on insect behavior and physiology. Recent work suggests neonicotinoids can impair insect olfactory processing, with potential downstream effects on behavior and possibly survival. However, it is unclear whether impairment occurs during peripheral olfactory detection, during information processing in central brain regions, or in both contexts.
View Article and Find Full Text PDFNectar chemistry can influence the behavior of pollinators in ways that affect pollen transfer, yet basic questions about how nectar chemical diversity impacts plant-pollinator relationships remain unexplored. For example, plants' capacity to produce neurotransmitters and endocrine disruptors may offer a means to manipulate pollinator behavior. We surveyed 15 plant species and discovered that two insect neurotransmitters, octopamine and tyramine, were widely distributed in floral nectar.
View Article and Find Full Text PDFInfectious disease is linked to impaired cognition across a breadth of host taxa and cognitive abilities, potentially contributing to variation in cognitive performance within and among populations. Impaired cognitive performance can stem from direct damage by the parasite, the host immune response, or lost opportunities for learning. Moreover, cognitive impairment could be compounded by factors that simultaneously increase infection risk and impair cognition directly, such as stress and malnutrition.
View Article and Find Full Text PDFAnimals develop food preferences based on taste, nutritional quality and to avoid environmental toxins. Yet, measuring preferences in an experimental setting can be challenging since ecologically realistic assays can be time consuming, while simplified assays may not capture natural sampling behavior. Field realism is a particular challenge when studying behavioral responses to environmental toxins in lab-based assays, given that toxins can themselves impact sampling behavior, masking our ability to detect preferences.
View Article and Find Full Text PDFPollinator foraging decisions shape microbial dispersal, and microbes change floral phenotypes in ways perceivable by pollinators. Yet, the role microbes play in the cognitive ecology of pollination is relatively unexplored. Reviewing recent literature on floral microbial ecology and pollinator behavior, we advocate for further integration between these two fields.
View Article and Find Full Text PDFNeonicotinoid pesticides can have a multitude of negative sublethal effects on bees. Understanding their impact on wild populations requires accurately estimating the dosages bees encounter under natural conditions. This is complicated by the possibility that bees might influence their own exposure: two recent studies found that bumblebees () preferentially consumed neonicotinoid-contaminated nectar, even though these chemicals are thought to be tasteless and odourless.
View Article and Find Full Text PDFSimilar to animal communication displays, flowers emit complex signals that attract pollinators. Signal complexity could lead to higher cognitive load for pollinators, impairing performance, or might benefit them by facilitating learning, memory and decision making. Here, we evaluated learning and memory in foragers of the bumble bee trained to simple (unimodal) versus complex (bimodal) signals under restrained conditions.
View Article and Find Full Text PDFPollinator nutritional ecology provides insights into plant-pollinator interactions, coevolution, and the restoration of declining pollinator populations. Bees obtain their protein and lipid nutrient intake from pollen, which is essential for larval growth and development as well as adult health and reproduction. Our previous research revealed that pollen protein to lipid ratios (P:L) shape bumble bee foraging preferences among pollen host-plant species, and these preferred ratios link to bumble bee colony health and fitness.
View Article and Find Full Text PDFNeonicotinoid pesticides can impair bees' ability to learn and remember information about flowers, critical for effective foraging. Although these effects on cognition may contribute to broader effects on health and performance, to date they have largely been assayed in simplified protocols that consider learning in a single sensory modality, usually olfaction. Given that real flowers display a variety of potentially useful signals, we assessed the effects of acute neonicotinoid exposure on multimodal learning in free-flying bumblebees.
View Article and Find Full Text PDFPlants often compete in a marketplace that involves the exchange of floral rewards for pollination service [1]. This marketplace is frequently viewed as revolving around a single currency, typically nectar. While this focus has established pollinators such as bees as classic models in foraging ecology, in reality many plants provide both pollen and nectar, which vary in composition within and across species [2].
View Article and Find Full Text PDFPollen plays a dual role as both a gametophyte and a nutritional reward for pollinators. Although pollen chemistry varies across plant species, its functional significance in pollination has remained obscure, in part because little is known about how floral visitors assess it. Bees rely on pollen for protein, but whether foragers evaluate its chemistry is unclear, as it is primarily consumed by larvae.
View Article and Find Full Text PDFThe impact of consuming biologically active compounds is often dose-dependent, where small quantities can be medicinal while larger doses are toxic. The consumption of plant secondary compounds can be toxic to herbivores in large doses, but can also improve survival in parasitized herbivores. In addition, recent studies have found that consuming nectar secondary compounds may decrease parasite loads in pollinators.
View Article and Find Full Text PDFBees are model organisms for the study of learning and memory, yet nearly all such research to date has used a single reward, nectar. Many bees collect both nectar (carbohydrates) and pollen (protein) on a single foraging bout, sometimes from different plant species. We tested whether individual bumblebees could learn colour associations with nectar and pollen rewards simultaneously in a foraging scenario where one floral type offered only nectar and the other only pollen.
View Article and Find Full Text PDFThe synthesis of secondary metabolites is a hallmark of plant defence against herbivores. These compounds may be detrimental to consumers, but can also protect herbivores against parasites. Floral nectar commonly contains secondary metabolites, but little is known about the impacts of nectar chemistry on pollinators, including bees.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
June 2014
Karl von Frisch's studies of bees' color vision and chemical senses opened a window into the perceptual world of a species other than our own. A century of subsequent research on bees' visual and olfactory systems has developed along two productive but independent trajectories, leaving the questions of how and why bees use these two senses in concert largely unexplored. Given current interest in multimodal communication and recently discovered interplay between olfaction and vision in humans and Drosophila, understanding multisensory integration in bees is an opportunity to advance knowledge across fields.
View Article and Find Full Text PDFThe environment experienced during development can dramatically affect the brain, with possible implications for sensory processing, learning, and memory. Although the effects of single sensory modalities on brain development have been repeatedly explored, the additive or interactive effects of multiple modalities have been less thoroughly investigated. We asked how experience with multisensory stimuli affected brain development in the bumblebee Bombus impatiens.
View Article and Find Full Text PDFFloral displays are under selection to both attract pollinators and deter antagonists. Here we show that a common floral trait, a nectar guide pattern, alters the behavior of bees that can act opportunistically as both pollinators and as antagonists. Generally, bees access nectar via the floral limb, transporting pollen through contact with the plant's reproductive structures; however bees sometimes extract nectar from a hole in the side of the flower that they or other floral visitors create.
View Article and Find Full Text PDFPlants often attract pollinators with floral displays composed of visual, olfactory, tactile and gustatory stimuli. Since pollinators' responses to each of these stimuli are usually studied independently, the question of why plants produce multi-component floral displays remains relatively unexplored. Here we used signal detection theory to test the hypothesis that complex displays reduce a pollinator's uncertainty about the floral signal.
View Article and Find Full Text PDF