Publications by authors named "Anne Rietz"

Spinal muscular atrophy (SMA) is a motor neuron disease and the leading genetic cause of infant mortality. SMA results from insufficient survival motor neuron (SMN) protein due to alternative splicing. Antisense oligonucleotides, gene therapy and splicing modifiers recently received FDA approval.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a neurodegenerative disorder that results from mutations in the SMN1 gene, leading to survival motor neuron (SMN) protein deficiency. One therapeutic strategy for SMA is to identify compounds that enhance the expression of the SMN2 gene, which normally only is a minor contributor to functional SMN protein production, but which is unaffected in SMA. A recent high-throughput screening campaign identified a 3,4-dihydro-4-phenyl-2(1H)-quinolinone derivative (2) that increases the expression of SMN2 by 2-fold with an EC = 8.

View Article and Find Full Text PDF

C5-substituted 2,4-diaminoquinazoline inhibitors of the decapping scavenger enzyme DcpS (DAQ-DcpSi) have been developed for the treatment of spinal muscular atrophy (SMA), which is caused by genetic deficiency in the Survival Motor Neuron (SMN) protein. These compounds are claimed to act as SMN2 transcriptional activators but data underlying that claim are equivocal. In addition it is unclear whether the claimed effects on SMN2 are a direct consequence of DcpS inhibitor or might be a consequence of lysosomotropism, which is known to be neuroprotective.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. We previously developed a high-throughput assay that employs an SMN2-luciferase reporter allowing identification of compounds that act transcriptionally, enhance exon recognition, or stabilize the SMN protein. We describe optimization and characterization of an analog suitable for in vivo testing.

View Article and Find Full Text PDF

The origin recognition complex (ORC) coordinates a series of events that lead to initiation of DNA strand duplication. As a nuclear double stranded DNA plasmid, the papillomavirus (PV) genome resembles a mini-chromosome in infected cells. To initiate its replication, the viral E2 protein binds to and recruits the E1 DNA helicase at the viral origin.

View Article and Find Full Text PDF

The human papillomavirus (HPV) HPV E6 protein has emerged as a central oncoprotein in HPV-associated cancers in which sustained expression is required for tumor progression. A majority of the E6 protein interactions within the human proteome use an alpha-helix groove interface for binding. The UBE3A/E6AP HECT domain ubiquitin ligase binds E6 at this helix-groove interface.

View Article and Find Full Text PDF

Expression and function of the human papillomavirus (HPV) early protein 6 (E6) is necessary for viral replication and oncogenesis in cervical cancers. HPV E6 targets the tumor suppressor protein p53 for degradation. To achieve this, "high-risk" HPV E6 proteins bind to and modify the target specificity of the ubiquitin ligase E6AP (E6 associated protein).

View Article and Find Full Text PDF

The cytotoxic action of ribonucleases (RNases) requires the interaction of the enzyme with the cellular membrane, its internalization, translocation to the cytosol, and the degradation of ribonucleic acid. The interplay of these processes as well as the role of the thermodynamic and proteolytic stability, the catalytic activity, and the evasion from the intracellular ribonuclease inhibitor (RI) has not yet been fully elucidated. As cytosolic internalization is indispensable for the cytotoxicity of extracellular ribonucleases, we investigated the extent of cytosolic internalization of a cytotoxic, RI-evasive RNase A variant (G88R-RNase A) and of various similarly cytotoxic but RI-sensitive RNase A tandem enzyme variants in comparison to the internalization of the non-cytotoxic and RI-sensitive RNase A.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: