IEEE/ACM Trans Comput Biol Bioinform
April 2022
Biomedical interaction networks have incredible potential to be useful in the prediction of biologically meaningful interactions, identification of network biomarkers of disease, and the discovery of putative drug targets. Recently, graph neural networks have been proposed to effectively learn representations for biomedical entities and achieved state-of-the-art results in biomedical interaction prediction. These methods only consider information from immediate neighbors but cannot learn a general mixing of features from neighbors at various distances.
View Article and Find Full Text PDFBackground: One of the most challenging tasks for bladder cancer diagnosis is to histologically differentiate two early stages, non-invasive Ta and superficially invasive T1, the latter of which is associated with a significantly higher risk of disease progression. Indeed, in a considerable number of cases, Ta and T1 tumors look very similar under microscope, making the distinction very difficult even for experienced pathologists. Thus, there is an urgent need for a favoring system based on machine learning (ML) to distinguish between the two stages of bladder cancer.
View Article and Find Full Text PDFBackground: The topological landscape of gene interaction networks provides a rich source of information for inferring functional patterns of genes or proteins. However, it is still a challenging task to aggregate heterogeneous biological information such as gene expression and gene interactions to achieve more accurate inference for prediction and discovery of new gene interactions. In particular, how to generate a unified vector representation to integrate diverse input data is a key challenge addressed here.
View Article and Find Full Text PDFComput Vis Image Underst
October 2016
Experts have a remarkable capability of locating, perceptually organizing, identifying, and categorizing objects in images specific to their domains of expertise. In this article, we present a hierarchical probabilistic framework to discover the stereotypical and idiosyncratic viewing behaviors exhibited with expertise-specific groups. Through these patterned eye movement behaviors we are able to elicit the domain-specific knowledge and perceptual skills from the subjects whose eye movements are recorded during diagnostic reasoning processes on medical images.
View Article and Find Full Text PDFObjectives: Extracting useful visual clues from medical images allowing accurate diagnoses requires physicians' domain knowledge acquired through years of systematic study and clinical training. This is especially true in the dermatology domain, a medical specialty that requires physicians to have image inspection experience. Automating or at least aiding such efforts requires understanding physicians' reasoning processes and their use of domain knowledge.
View Article and Find Full Text PDFClinical decision support systems (CDSS) assist physicians and other medical professionals in tasks such as differential diagnosis. End users may use different decision-making strategies depending on medical training. Study of eye movements reveals information processing strategies that are executed at a level below consciousness.
View Article and Find Full Text PDF