Publications by authors named "Anne Puech"

Background: The Kit gene encodes a receptor tyrosine kinase involved in various biological processes including melanogenesis, hematopoiesis and gametogenesis in mice and human. A large number of Kit mutants has been described so far showing the pleiotropic phenotypes associated with partial loss-of-function of the gene. Hypomorphic mutations can induce a light coat color phenotype while complete lack of KIT function interferes with embryogenesis.

View Article and Find Full Text PDF

Velocardiofacial/DiGeorge syndrome (VCFS/DGS) is a developmental disorder caused by a 1.5 to 3-Mb hemizygous 22q11.2 deletion.

View Article and Find Full Text PDF

In humans and in animal models, susceptibility to arthritis is under complex genetic control, reflecting influences on the immunological processes that initiate autoimmunity and on subsequent inflammatory mechanisms in the joints. The effector phases are conveniently modeled by the K/BxN serum transfer system, a robust model well suited for genetic analysis where arthritis is initiated by pathogenic Ig. Here, we mapped the genetic loci distinguishing the high-responder BALB/c vs.

View Article and Find Full Text PDF

Background Information: The sensing of head movement in mammals depends upon the vestibular endorgan of the inner ear, a complex structure made up of the semicircular canals and otoliths. Due to the similarity between the human and mouse vestibular apparatus, the analysis of mutant mouse is a valuable strategy aiming to identify genes involved in the control of balance and movement.

Results: In the course of a genome-wide chemical-mutagenesis programme, we isolated a recessive mutation, named ied (inner ear defect), which induced a severe loss-of-balance.

View Article and Find Full Text PDF

Computational tools can markedly accelerate the rate at which murine genetic models can be analyzed. We developed a computational method for mapping phenotypic traits that vary among inbred strains onto haplotypic blocks. This method correctly predicted the genetic basis for strain-specific differences in several biologically important traits.

View Article and Find Full Text PDF

Chemical mutagenesis in the mouse is a powerful approach for phenotype-driven genetics, but questions remain about the efficiency with which new mutations ascertained by their phenotype can be localized and identified, and that knowledge applied to a specific biological problem. During a global screen for dominant phenotypes in about 30,000 animals, a novel class of pigmentation mutants were identified by dark skin (Dsk). We determined the genetic map location, homozygous phenotype, and histology of 10 new Dsk and 2 new dark coat (Dcc) mutations, and identified mutations in Agouti (Met1Leu, Dcc4), Sox18 (Leu220ter, Dcc1), Keratin 2e (Thr500Pro, Dsk2), and Egfr (Leu863Gln, Dsk5).

View Article and Find Full Text PDF

A map of 191 single-nucleotide polymorphism (SNPs) was built across a 5-Mb segment from chromosome 13q34 that has been genetically linked to schizophrenia. DNA from 213 schizophrenic patients and 241 normal individuals from Canada were genotyped with this marker set. Two 1,400- and 65-kb regions contained markers associated with the disease.

View Article and Find Full Text PDF