We report a method for deriving the absolute value of absorption coefficients at depth in bilayered media. The method was simplified from that of time-resolved diffuse optical tomography (TR-DOT) into one dimension to validate and set up the main parameters with the help of simulations, and to test it in an easy preclinical model. The method was applied to buried flaps as used in reconstructive surgery, and absolute chromophore concentrations in the flap and in the upper (skin and fat) layer were derived.
View Article and Find Full Text PDFBackground: Flap monitoring in reconstructive surgery is particularly important because flap failure is a dramatic event for the patient and for the medical team. Noninvasive deep tissue oxygenation monitoring is a challenge. The aim of this experimental study was to assess the performance of time-resolved near-infrared spectroscopy compared with continuous-wave near-infrared spectroscopy and with invasive oxygen partial pressure measurement in pigs.
View Article and Find Full Text PDFBackground: In recent years, many devices have been developed to monitor free flaps. The Licox probe, which measures tissue oxygen pressure (PtO ), is one of the available devices. Our aim was to demonstrate that PtO could distinguish arterial from venous occlusion in a porcine fascio-cutaneous flap model.
View Article and Find Full Text PDFTo approach wide-field optical properties quantification in real heterogeneous biological tissue, we developed a Dual-Step setup that couples a punctual diffuse reflectance spectroscopy (DRS) technique with multispectral imaging (MSI). The setup achieves wide-field optical properties assessment through an initial estimation of scattering with DRS, which is used to estimate absorption with MSI. The absolute quantification of optical properties is based on the ACA-Pro algorithm that has been adapted both for DRS and for MSI.
View Article and Find Full Text PDFWe have developed an adaptive calibration algorithm and protocol (ACA-Pro) that corrects from the instrumental response of various spatially resolved diffuse reflectance spectroscopy (DRSsr) systems to enable the quantification of absorption and scattering properties based on a Monte Carlo-based look-up-table approach. The protocol involves the use of a calibration reference base built with measurements of a range of different diffusive intralipid phantoms. Moreover, an advanced strategy was established to take into account the experimental variations with an additional measurement of a common solid material, allowing the use of a single calibration reference base for all experiments.
View Article and Find Full Text PDFThe noninvasive assessment of flap viability in autologous reconstruction surgery is still an unmet clinical need. To cope with this problem, we developed a proof-of-principle fully automatized setup for fast time-gated diffuse optical tomography exploiting Mellin-Laplace transform to obtain three-dimensional tomographic reconstructions of oxy- and deoxy-hemoglobin concentrations. We applied this method to perform preclinical tests on rats inducing total venous occlusion in the cutaneous abdominal flaps.
View Article and Find Full Text PDFDiffuse optical tomography for medical applications can require probes with small dimensions involving short source-detector separations. Even though this configuration is seen at first as a constraint due to the challenge of depth sensitivity, we show here that it can potentially be an asset for spatial resolution in depth. By comparing two fiber optic probes on a test object, we first show with simulations that short source-detector separations improve the spatial resolution down to a limit depth.
View Article and Find Full Text PDFWe present the first experimental results of reflectance Diffuse Optical Tomography (DOT) performed with a fast-gated single-photon avalanche diode (SPAD) coupled to a time-correlated single-photon counting system. The Mellin-Laplace transform was employed to process time-resolved data. We compare the performances of the SPAD operated in the gated mode vs.
View Article and Find Full Text PDFWe show how to apply the Mellin-Laplace transform to process time-resolved reflectance measurements for diffuse optical tomography. We illustrate this method on simulated signals incorporating the main sources of experimental noise and suggest how to fine-tune the method in order to detect the deepest absorbing inclusions and optimize their localization in depth, depending on the dynamic range of the measurement. To finish, we apply this method to measurements acquired with a setup including a femtosecond laser, photomultipliers and a time-correlated single photon counting board.
View Article and Find Full Text PDFPolarization gating is a popular technique in biomedical optics. It is widely used to inspect the surface of the tissues (under colinear or cocircular detection) or instead to probe the volume (cross-linear detection), without information on the probed depth. Elliptical polarization is introduced to explore the possibility of probing diffuse tissues at selective depths.
View Article and Find Full Text PDFWe investigate the use of the Mellin-Laplace transform for reconstructing optical parameters from time-resolved optical tomography in diffusive media. We present here its definition, its mathematical properties, and its sensitivity to variations of optical properties. The method was validated on two-dimensional reconstructions from simulation in the reflection geometry.
View Article and Find Full Text PDFWe report a new technique to measure coagulation dynamics on whole-blood samples. The method relies on the analysis of the speckle figure resulting from a whole-blood sample mixed with coagulation reagent and introduced in a thin chamber illuminated with a coherent light. A dynamic study of the speckle reveals a typical behavior due to coagulation.
View Article and Find Full Text PDFWeighted residuals and the reduced chi(2) (chi(R) (2)) value are investigated with regard to their relevance for assessing optical property estimates using the diffusion equation for time-resolved measurements in turbid media. It is shown and explained, for all photon counting experiments including lifetime estimation, why chi(R) (2) increases linearly with the number of photons when there is a model bias. Only when a sufficient number of photons has been acquired, chi(R) (2) is a pertinent value for assessing the accuracy of mu(a) and mu(s)' estimates.
View Article and Find Full Text PDF