Purpose: Clinical trials reported 25% to 30% pathologic complete response (pCR) rates in HER2+ patients with breast cancer treated with anti-HER2 therapies without chemotherapy. We hypothesize that a multiparameter classifier can identify patients with HER2-"addicted" tumors who may benefit from a chemotherapy-sparing strategy.
Experimental Design: Baseline HER2+ breast cancer specimens from the TBCRC023 and PAMELA trials, which included neoadjuvant treatment with lapatinib and trastuzumab, were used.
Although systemic chemotherapy remains the standard of care for TNBC, even combination chemotherapy is often ineffective. The identification of biomarkers for differential chemotherapy response would allow for the selection of responsive patients, thus maximizing efficacy and minimizing toxicities. Here, we leverage TNBC PDXs to identify biomarkers of response.
View Article and Find Full Text PDFPurpose: Prior neoadjuvant trials with 12 weeks of dual anti-HER2 therapy without chemotherapy demonstrated a meaningful pathologic complete response (pCR) in patients with HER2-positive breast cancer. In this trial, we sought to determine whether longer treatment would increase the rate of pCR.
Patients And Methods: TBCRC023 (NCT00999804) is a randomized phase II trial combining a Simon phase II design in the experimental arm with a pick-the-winner design, not powered for direct comparison.
Purpose: Tumor-infiltrating lymphocytes (TIL) are associated with benefit to trastuzumab and chemotherapy in patients with early-stage HER2 breast cancer. The predictive value of TILs, TIL subsets, and other immune cells in patients receiving chemotherapy-sparing lapatinib plus trastuzumab treatment is unclear. Hematoxylin and eosin-stained slides ( = 59) were used to score stromal (s-)TILs from pretreatment biopsies of patients enrolled in the neoadjuvant TBCRC006 trial of 12-week lapatinib plus trastuzumab therapy (plus endocrine therapy for ER tumors).
View Article and Find Full Text PDFPurpose: Half of hormone receptor-positive (HR+) breast cancer patients will develop joint pain, termed aromatase inhibitor-induced arthralgia (AIA), while taking aromatase inhibitor therapy. Though there is no universally accepted effective treatment for AIA, there has been some evidence to support high-dose vitamin D as a treatment.
Methods: We randomized post-menopausal women who were beginning adjuvant AI therapy to receive standard-dose vitamin D3 (800 IU daily for 52 weeks), or high-dose vitamin D3 (50,000 IU weekly for 12 weeks, followed by 2000 IU daily for 40 weeks).
Background: Identification of HER2-positive breast cancers with high anti-HER2 sensitivity could help de-escalate chemotherapy. Here, we tested a clinically applicable RNA-based assay that combines ERBB2 and the HER2-enriched (HER2-E) intrinsic subtype in HER2-positive disease treated with dual HER2-blockade without chemotherapy.
Methods: A research-based PAM50 assay was applied in 422 HER2-positive tumors from five II-III clinical trials (SOLTI-PAMELA, TBCRC023, TBCRC006, PER-ELISA, EGF104090).
Breast Cancer Res Treat
February 2018
Purpose: Aberrant activation of the PI3K pathway has been implicated in resistance to HER2-targeted therapy, but results of clinical trials are confounded by the co-administration of chemotherapy. We investigated the effect of perturbations of this pathway in breast cancers from patients treated with neoadjuvant anti-HER2-targeted therapy without chemotherapy.
Patients And Methods: Baseline tumor samples from patients with HER2-positive breast cancer enrolled in TBCRC006 (NCT00548184), a 12-week neoadjuvant clinical trial with lapatinib plus trastuzumab [plus endocrine therapy for estrogen receptor (ER)-positive tumors], were assessed for PTEN status by immunohistochemistry and PIK3CA mutations by sequencing.
Purpose: To investigate the direct effect and therapeutic consequences of epidermal growth factor receptor 2 (HER2)-targeting therapy on expression of estrogen receptor (ER) and Bcl2 in preclinical models and clinical tumor samples.
Experimental Design: Archived xenograft tumors from two preclinical models (UACC812 and MCF7/HER2-18) treated with ER and HER2-targeting therapies and also HER2+ clinical breast cancer specimens collected in a lapatinib neoadjuvant trial (baseline and week 2 posttreatment) were used. Expression levels of ER and Bcl2 were evaluated by immunohistochemistry and Western blot analysis.
Study Objective: To determine if development of acneiform rash is a predictor of objective response rate with lapatinib.
Design: Subanalysis of data from a prospective, phase II study.
Setting: Academic breast care clinic.
Breast cancer research is hampered by difficulties in obtaining and studying primary human breast tissue, and by the lack of in vivo preclinical models that reflect patient tumor biology accurately. To overcome these limitations, we propagated a cohort of human breast tumors grown in the epithelium-free mammary fat pad of severe combined immunodeficient (SCID)/Beige and nonobese diabetic (NOD)/SCID/IL-2γ-receptor null (NSG) mice under a series of transplant conditions. Both models yielded stably transplantable xenografts at comparably high rates (∼21% and ∼19%, respectively).
View Article and Find Full Text PDFPurpose: We previously reported the eradication of human epidermal growth factor receptor 2 (HER2)- amplified human xenografts in mice by inhibition of the HER2 pathway with lapatinib and trastuzumab to block all homo- and heterodimer signaling as well as by blockade of estrogen receptor (ER) when expressed. In this clinical trial, we sought to translate these findings to patients using targeted therapy without chemotherapy.
Patients And Method: Women with stages II to III HER2-positive breast cancers were eligible.
Some breast cancers have been shown to contain a small fraction of cells characterized by CD44(+)/CD24(-/low) cell-surface antigen profile that have high tumor-initiating potential. In addition, breast cancer cells propagated in vitro as mammospheres (MSs) have also been shown to be enriched for cells capable of self-renewal. In this study, we have defined a gene expression signature common to both CD44(+)/CD24(-/low) and MS-forming cells.
View Article and Find Full Text PDFBackground: Tumorigenic breast cancer cells that express high levels of CD44 and low or undetectable levels of CD24 (CD44(>)/CD24(>/low)) may be resistant to chemotherapy and therefore responsible for cancer relapse. These tumorigenic cancer cells can be isolated from breast cancer biopsies and propagated as mammospheres in vitro. In this study, we aimed to test directly in human breast cancers the effect of conventional chemotherapy or lapatinib (an epidermal growth factor receptor [EGFR]/HER2 pathway inhibitor) on this tumorigenic CD44(>) and CD24(>/low) cell population.
View Article and Find Full Text PDF