Peroxisome proliferator-activated receptor (PPAR)α is a nuclear receptor that coordinates liver metabolism during fasting. Fatty acid synthase (FAS) is an enzyme that stores excess calories as fat during feeding, but it also activates hepatic PPARα by promoting synthesis of an endogenous ligand. Here we show that the mechanism underlying this paradoxical relationship involves the differential regulation of FAS in at least two distinct subcellular pools: cytoplasmic and membrane-associated.
View Article and Find Full Text PDFDe novo lipogenesis in adipocytes, especially with high fat feeding, is poorly understood. We demonstrate that an adipocyte lipogenic pathway encompassing fatty acid synthase (FAS) and PexRAP (peroxisomal reductase activating PPARγ) modulates endogenous PPARγ activation and adiposity. Mice lacking FAS in adult adipose tissue manifested increased energy expenditure, increased brown fat-like adipocytes in subcutaneous adipose tissue, and resistance to diet-induced obesity.
View Article and Find Full Text PDFBiochim Biophys Acta
May 2012
Fatty acid synthase (FAS) catalyzes the de novo synthesis of fatty acids. In the liver, FAS has long been categorized as a housekeeping protein, producing fat for storage of energy when nutrients are present in excess. Most previous studies of FAS regulation have focused on the control of gene expression.
View Article and Find Full Text PDF