Publications by authors named "Anne Niknejad"

Bgee (https://www.bgee.org/) is a database to retrieve and compare gene expression patterns in multiple animal species.

View Article and Find Full Text PDF
Article Synopsis
  • Obesity is often viewed as a lifestyle choice rather than a disease, leading to initiatives like the IMI SOPHIA project, which aims to better categorize individuals with obesity based on their disease risk and treatment responses.
  • SOPHIA faces challenges due to siloed clinical cohorts, which limit data sharing for biomarker discovery, but tackles this by using a federated database built on open-source DataSHIELD technology that integrates 16 different data sources.
  • The project allows secure analysis of combined data without revealing individual patient information, demonstrated through a proof-of-concept analysis linking BMI and blood pressure, which showed results similar to traditional meta-analyses, setting a standard for safe collaborative research.
View Article and Find Full Text PDF

We identify biomarkers for disease progression in three type 2 diabetes cohorts encompassing 2,973 individuals across three molecular classes, metabolites, lipids and proteins. Homocitrulline, isoleucine and 2-aminoadipic acid, eight triacylglycerol species, and lowered sphingomyelin 42:2;2 levels are predictive of faster progression towards insulin requirement. Of ~1,300 proteins examined in two cohorts, levels of GDF15/MIC-1, IL-18Ra, CRELD1, NogoR, FAS, and ENPP7 are associated with faster progression, whilst SMAC/DIABLO, SPOCK1 and HEMK2 predict lower progression rates.

View Article and Find Full Text PDF

Bgee is a database to retrieve and compare gene expression patterns in multiple animal species, produced by integrating multiple data types (RNA-Seq, Affymetrix, in situ hybridization, and EST data). It is based exclusively on curated healthy wild-type expression data (e.g.

View Article and Find Full Text PDF

Motivation: A large variety of molecular interactions occurs between biomolecular components in cells. When a molecular interaction results in a regulatory effect, exerted by one component onto a downstream component, a so-called 'causal interaction' takes place. Causal interactions constitute the building blocks in our understanding of larger regulatory networks in cells.

View Article and Find Full Text PDF

Background: On-clopidogrel platelet reactivity (PR) is associated with the risk of thrombotic or bleeding event in selected populations of high-risk patients. PR is a highly heritable phenotype and a few variants of cytochrome genes, essentially CYP2C19, are associated with PR but only explain 5% to 12% of the variability.

Objective: The aim of this study is to delineate genetic determinants of on-clopidogrel PR using high-throughput sequencing.

View Article and Find Full Text PDF

Rhea (http://www.rhea-db.org) is a comprehensive and non-redundant resource of over 11 000 expert-curated biochemical reactions that uses chemical entities from the ChEBI ontology to represent reaction participants.

View Article and Find Full Text PDF

Background: Smith-Magenis syndrome (SMS) is a developmental disability/multiple congenital anomaly disorder resulting from haploinsufficiency of RAI1. It is characterized by distinctive facial features, brachydactyly, sleep disturbances, and stereotypic behaviors.

Methods: We investigated a cohort of 15 individuals with a clinical suspicion of SMS who showed neither deletion in the SMS critical region nor damaging variants in RAI1 using whole exome sequencing.

View Article and Find Full Text PDF

Rhea (http://www.rhea-db.org) is a comprehensive and non-redundant resource of expert-curated biochemical reactions designed for the functional annotation of enzymes and the description of metabolic networks.

View Article and Find Full Text PDF

Background: Prior knowledge networks (PKNs) provide a framework for the development of computational biological models, including Boolean models of regulatory networks which are the focus of this work. PKNs are created by a painstaking process of literature curation, and generally describe all relevant regulatory interactions identified using a variety of experimental conditions and systems, such as specific cell types or tissues. Certain of these regulatory interactions may not occur in all biological contexts of interest, and their presence may dramatically change the dynamical behaviour of the resulting computational model, hindering the elucidation of the underlying mechanisms and reducing the usefulness of model predictions.

View Article and Find Full Text PDF

Cytokinesis in fission yeast is controlled by the Septation Initiation Network (SIN), a protein kinase signaling network using the spindle pole body as scaffold. In order to describe the qualitative behavior of the system and predict unknown mutant behaviors we decided to adopt a Boolean modeling approach. In this paper, we report the construction of an extended, Boolean model of the SIN, comprising most SIN components and regulators as individual, experimentally testable nodes.

View Article and Find Full Text PDF

Biocuration has become a cornerstone for analyses in biology, and to meet needs, the amount of annotations has considerably grown in recent years. However, the reliability of these annotations varies; it has thus become necessary to be able to assess the confidence in annotations. Although several resources already provide confidence information about the annotations that they produce, a standard way of providing such information has yet to be defined.

View Article and Find Full Text PDF

Motivation: Lipids are a large and diverse group of biological molecules with roles in membrane formation, energy storage and signaling. Cellular lipidomes may contain tens of thousands of structures, a staggering degree of complexity whose significance is not yet fully understood. High-throughput mass spectrometry-based platforms provide a means to study this complexity, but the interpretation of lipidomic data and its integration with prior knowledge of lipid biology suffers from a lack of appropriate tools to manage the data and extract knowledge from it.

View Article and Find Full Text PDF

Background: Elucidating disease and developmental dysfunction requires understanding variation in phenotype. Single-species model organism anatomy ontologies (ssAOs) have been established to represent this variation. Multi-species anatomy ontologies (msAOs; vertebrate skeletal, vertebrate homologous, teleost, amphibian AOs) have been developed to represent 'natural' phenotypic variation across species.

View Article and Find Full Text PDF

As part of the development of the database Bgee (a dataBase for Gene Expression Evolution), we annotate and analyse expression data from different types and different sources, notably Affymetrix data from GEO and ArrayExpress, and RNA-Seq data from SRA. During our quality control procedure, we have identified duplicated content in GEO and ArrayExpress, affecting ∼14% of our data: fully or partially duplicated experiments from independent data submissions, Affymetrix chips reused in several experiments, or reused within an experiment. We present here the procedure that we have established to filter such duplicates from Affymetrix data, and our procedure to identify future potential duplicates in RNA-Seq data.

View Article and Find Full Text PDF

Motivation: Most anatomical ontologies are species-specific, whereas a framework for comparative studies is needed. We describe the vertebrate Homologous Organs Groups ontology, vHOG, used to compare expression patterns between species.

Results: vHOG is a multispecies anatomical ontology for the vertebrate lineage.

View Article and Find Full Text PDF

There is growing interest to use mass spectrometry data to search genome sequences directly. Previous work by other authors demonstrated that this approach is able to correct and complement available genome annotations. We discuss the practical difficulty of searching large eukaryotic genomes with peptide ion trap tandem mass spectra of small proteins (<40 kDa).

View Article and Find Full Text PDF

We present an integrated proteomics platform designed for performing differential analyses. Since reproducible results are essential for comparative studies, we explain how we improved reproducibility at every step of our laboratory processes, e.g.

View Article and Find Full Text PDF

In a previous paper we introduced a novel model-based approach (OLAV) to the problem of identifying peptides via tandem mass spectrometry, for which early implementations showed promising performance. We recently further improved this performance to a remarkable level (1-2% false positive rate at 95% true positive rate) and characterized key properties of OLAV like robustness and training set size. We present these results in a synthetic and coherent way along with detailed performance comparisons, a new scoring component making use of peptide amino acidic composition, and new developments like automatic parameter learning.

View Article and Find Full Text PDF