Front Bioeng Biotechnol
October 2024
Tendon injuries disrupt successful transmission of force between muscle and bone, resulting in reduced mobility, increased pain, and significantly reduced quality of life for affected patients. There are currently no targeted treatments to improve tendon healing beyond conservative methods such as rest and physical therapy. Tissue engineering approaches hold great promise for designing instructive biomaterials that could improve tendon healing or for generating replacement graft tissue.
View Article and Find Full Text PDFSuccessful tendon healing requires sufficient deposition and remodeling of new extracellular matrix at the site of injury, with this process mediating in part through fibroblast activation via communication with macrophages. Moreover, resolution of healing requires clearance or reversion of activated cells, with chronic interactions with persistent macrophages impairing resolution and facilitating the conversion the conversion to fibrotic healing. As such, modulation of the macrophage environment represents an important translational target to improve the tendon healing process.
View Article and Find Full Text PDFSatisfactory healing following acute tendon injury is marred by fibrosis. Despite the high frequency of tendon injuries and poor outcomes, there are no pharmacological therapies in use to enhance the healing process. Moreover, systemic treatments demonstrate poor tendon homing, limiting the beneficial effects of potential tendon therapeutics.
View Article and Find Full Text PDFTendon injuries are a major clinical problem, with poor patient outcomes caused by abundant scar tissue deposition during healing. Myofibroblasts play a critical role in the initial restoration of structural integrity after injury. However, persistent myofibroblast activity drives the transition to fibrotic scar tissue formation.
View Article and Find Full Text PDFTendon regeneration following acute injury is marred by a fibrotic healing response that prevents complete functional recovery. Despite the high frequency of tendon injuries and the poor outcomes, including functional deficits and elevated risk of re-injury, there are currently no pharmacological therapies in clinical use to enhance the healing process. Several promising pharmacotherapies have been identified; however, systemic treatments lack tendon specificity, resulting in poor tendon biodistribution and perhaps explaining the largely limited beneficial effects of these treatments on the tendon healing process.
View Article and Find Full Text PDFFlexor tendon injuries are common and heal poorly owing to both the deposition of function- limiting peritendinous scar tissue and insufficient healing of the tendon itself. Therapeutic options are limited due to a lack of understanding of the cell populations that contribute to these processes. Here, we identified a bi-fated progenitor cell population that originates from the epitenon and goes on to contribute to both peritendinous fibrosis and regenerative tendon healing following acute tendon injury.
View Article and Find Full Text PDFTendon injuries heal via a scar-mediated response, and there are no biological approaches to promote more regenerative healing. Mouse flexor tendons heal through the formation of spatially distinct tissue areas: a highly aligned tissue bridge between the native tendon stubs that is enriched for adult Scleraxis-lineage cells and a disorganized outer shell associated with peri-tendinous scar formation. However, the specific molecular programs that underpin these spatially distinct tissue profiles are poorly defined.
View Article and Find Full Text PDFDuring tendon healing, macrophages are thought to be a key mediator of scar tissue formation, which prevents successful functional restoration of the tendon. However, macrophages are critical for successful tendon healing as they aid in wound debridement, extracellular matrix deposition, and promote fibroblast proliferation. Recent work has sought to better define the multi-faceted functions of macrophages using depletion studies, while other studies have identified a tendon resident macrophage population.
View Article and Find Full Text PDFOur objective was to identify the upper ambient temperature threshold that triggers an increase in cortisol in response to increased thermoregulatory demands in polar bears. The results reported here include endocrine data collected over two years from 25 polar bears housed in 11 accredited zoological institutions across North America. The effects of ambient temperature, sex, age group (juvenile, adult, elderly), breeding season and humidity on fecal cortisol metabolite (FCM) concentrations (N = 8439 samples) were evaluated using linear mixed models.
View Article and Find Full Text PDFTendon injuries are common and heal poorly, due in part to a lack of understanding of fundamental tendon cell biology. A major impediment to the study of tendon cells is the absence of robust, well-characterized in vitro models. Unlike other tissue systems, current tendon cell models do not account for how differences in isolation methodology may affect the activation state of tendon cells or the presence of various tendon cell subpopulations.
View Article and Find Full Text PDFAchilles tendinopathy is a debilitating condition affecting the entire spectrum of society and a condition that increases the risk of tendon rupture. Effective therapies remain elusive, as anti-inflammatory drugs and surgical interventions show poor long-term outcomes. Eccentric loading of the Achilles muscle-tendon unit is an effective physical therapy for treatment of symptomatic human tendinopathy.
View Article and Find Full Text PDFDespite the requirement for -lineage (Scx) cells during tendon development, the function of Scx cells during adult tendon repair, post-natal growth, and adult homeostasis have not been defined. Therefore, we inducibly depleted Scx cells (ScxLin) prior to tendon injury and repair surgery and hypothesized that ScxLin mice would exhibit functionally deficient healing compared to wild-type littermates. Surprisingly, depletion of Scx cells resulted in increased biomechanical properties without impairments in gliding function at 28 days post-repair, indicative of regeneration.
View Article and Find Full Text PDFAlthough inflammation is necessary during the early phases of tissue repair, persistent inflammation contributes to fibrosis. Acute tendon injuries often heal through a fibrotic mechanism, which impedes regeneration and functional recovery. Because inflammation mediated by nuclear factor κB (NF-κB) signaling is implicated in this process, we examined the spatial, temporal, and cell type-specific activation profile of canonical NF-κB signaling during tendon healing.
View Article and Find Full Text PDFThe use of tamoxifen-inducible models of Cre recombinase in the tendon field is rapidly expanding, resulting in an enhanced understanding of tendon homeostasis and healing. However, the effects of tamoxifen on the tendon are not well-defined, which is particularly problematic given that tamoxifen can have both profibrotic and antifibrotic effects in a tissue-specific manner. Therefore, in the present study, we examined the effects of tamoxifen on tendon homeostasis and healing in male and female C57Bl/6J mice.
View Article and Find Full Text PDFOver 300,000 tendon repairs are performed annually in the United States to repair damage to tendons as a result of either acute trauma or chronic tendinopathy. Individuals with type II diabetes mellitus (T2DM) are four times more likely to experience tendinopathy, and up to five times more likely to experience a tendon tear or rupture than non-diabetics. As nearly 10% of the US population is diabetic, with an additional 33% pre-diabetic, this is a particularly problematic health care challenge.
View Article and Find Full Text PDFIdentification of pro-regenerative approaches to improve tendon healing is critically important as the fibrotic healing response impairs physical function. In the present study we tested the hypothesis that S100a4 haploinsufficiency or inhibition of S100a4 signaling improves tendon function following acute injury and surgical repair in a murine model. We demonstrate that S100a4 drives fibrotic tendon healing primarily through a cell non-autonomous process, with S100a4 haploinsufficiency promoting regenerative tendon healing.
View Article and Find Full Text PDFExtracellular matrix (ECM) is responsible for tendon strength and elasticity. Healed tendon ECM lacks structural integrity, leading to reinjury. Porcine urinary bladder matrix (UBM) provides a scaffold and source of bioactive proteins to improve tissue healing, but has received limited attention for treating tendon injuries.
View Article and Find Full Text PDFExtracellular matrix (ECM) is responsible for tendon strength and elasticity. Healed tendon ECM lacks structural integrity, leading to reinjury. Porcine urinary bladder matrix (UBM) provides a scaffold and source of bioactive proteins to improve tissue healing, but has received limited attention for treating tendon injuries.
View Article and Find Full Text PDFAdipose-derived stromal vascular fraction (SVF) is a heterogeneous population of cells that yields a homogeneous population of plastic-adherent adipose tissue-derived stromal cells (ASC) when culture-expanded. SVF and ASC have been used clinically to improve tendon healing, yet their mechanism of action is not fully elucidated. The objective of this study was to investigate the potential for ASC to act as trophic mediators for tendon healing.
View Article and Find Full Text PDFTendon injuries are common and can dramatically impair patient mobility and productivity, resulting in a significant socioeconomic burden and reduced quality of life. Because the tendon healing process results in the formation of a fibrotic scar, injured tendons never regain the mechanical strength of the uninjured tendon, leading to frequent reinjury. Many tendons are also prone to the development of peritendinous adhesions and excess scar formation, which further reduce tendon function and lead to chronic complications.
View Article and Find Full Text PDF