Catheter Cardiovasc Interv
February 2012
Technologies which allow rotational angiographic image acquisition and three dimensional (3-D) vascular reconstruction with subsequent fluoroscopic registration for live 3-D image overlay are rapidly being adopted. We present the first use of rotational angiography with integrated 3-D image overlay for guidance during complex pulmonary artery stent placement. Technical considerations, advantages, and limitations of this procedural strategy are discussed.
View Article and Find Full Text PDFImaging modalities utilized in the interventional cardiology suite have seen an impressive evolution and expansion recently, particularly with regard to the recent interest in three-dimensional (3D) imaging. Despite this, the backbone of visualization in the catheterization laboratory remains two-dimensional (2D) X-ray fluoroscopy and cine-angiography. New imaging techniques under development, referred to as three-dimensional rotational angiography (RA) and C-arm CT, hold great promise for improving current device implantation and understanding of cardiovascular anatomy.
View Article and Find Full Text PDFBackground: Although fixed view x-ray angiography remains the primary technique for anatomic imaging of coronary artery disease, the known shortcomings of 2D projection imaging may limit accurate 3D vessel and lesion definition and characterization. A recently developed method to create 3D images of the coronary arteries uses x-ray projection images acquired during a 180 degrees C-arm rotation and continuous contrast injection followed by ECG-gated iterative reconstruction. This method shows promise for providing high-quality 3D reconstructions of the coronary arteries with no user interaction but requires clinical evaluation.
View Article and Find Full Text PDFFully automatic generation of a volumetric representation of the coronary artery tree can be achieved by rotational coronary angiography acquisition and three-dimensional tomographic reconstruction. The generated volume datasets can assist the physician during percutaneous coronary interventions by visualizing three-dimensional coronary morphology and offering utility tools to derive various quantitative measurements. These utility tools allow lesion assessment, optimal working-view selection for specific vessel segments, and improved guidance via overlay functionality or follow C-arc.
View Article and Find Full Text PDFContrast agents targeted to molecular markers of disease are currently being developed with the goal of identifying disease early and evaluating treatment effectiveness using noninvasive imaging modalities such as MRI. Pharmacokinetic profiling of the binding of targeted contrast agents, while theoretically possible with MRI, has thus far only been demonstrated with more sensitive imaging techniques. Paramagnetic liquid perfluorocarbon nanoparticles were formulated to target alpha(v)beta(3)-integrins associated with early atherosclerosis in cholesterol-fed rabbits to produce a measurable signal increase on magnetic resonance images after binding.
View Article and Find Full Text PDFRecent advances in the design of fluorinated nanoparticles for molecular magnetic resonance imaging (MRI) have enabled specific detection of (19)F nuclei, providing unique and quantifiable spectral signatures. However, a pressing need for signal enhancement exists because the total (19)F in imaging voxels is often limited. By directly incorporating a relaxation agent, gadolinium (Gd), into the lipid monolayer that surrounds the perfluorocarbon (PFC), a marked augmentation of the (19)F signal from 200-nm nanoparticles was achieved.
View Article and Find Full Text PDFMolecular imaging is a novel tool that has allowed non-invasive diagnostic imaging to transition from gross anatomical description to identification of specific tissue epitopes and observation of biological processes at the cellular level. This technique has been confined to the field of nuclear imaging; however, recent advances in nanotechnology have extended this research to include ultrasound (US) and magnetic resonance (MR) imaging. The exploitation of nanotechnology for MR and US molecular imaging has generated several candidate contrast agents.
View Article and Find Full Text PDFNanomedicine promises to enhance the ability of clinicians to address some of the serious challenges responsible for cardiovascular mortality, morbidity and numerous societal consequences. Targeted imaging and therapy applications with perfluorocarbon nanoparticles are relevant to a broad spectrum of cardiovascular diseases, ranging from asymptomatic atherosclerotic disease to acute myocardial infarction or stroke. As illustrated in this article, perfluorocarbon nanoparticles offer new tools to recognize and characterize pathology, to identify and segment high-risk patients and to treat chronic and acute disease.
View Article and Find Full Text PDFWhile the current gold standard for coronary imaging is X-ray angiography, evidence is accumulating that it may not be the most sensitive technique for detecting unstable plaque. Other imaging modalities, such as cardiovascular magnetic resonance (CMR), can be used for plaque characterization, but suffer from long scan and reconstruction times for determining regions of stenosis. We have developed an intravascular fluorinated contrast agent that can be used for angiography with cardiovascular magnetic resosnace at clinical field strengths (1.
View Article and Find Full Text PDFAdvances in bionanotechnology are poised to impact the field of cardiovascular diagnosis and therapy for decades to come. This review seeks to illustrate selected examples of newly developed diagnostic and therapeutic nanosystems that have been evaluated in experimental atherosclerosis, thrombosis, and vascular biology. We review a variety of nanotechnologies that are capable of detecting early cardiovascular pathology, as well as associated imaging approaches and conjunctive strategies for site-targeted treatment with nanoparticle delivery systems.
View Article and Find Full Text PDFMRI has been employed to elucidate the migratory behavior of stem/progenitor cells noninvasively in vivo with traditional proton (1H) imaging of iron oxide nanoparticle-labeled cells. Alternatively, we demonstrate that fluorine (19F) MRI of cells labeled with different types of liquid perfluorocarbon (PFC) nanoparticles produces unique and sensitive cell markers distinct from any tissue background signal. To define the utility for cell tracking, mononuclear cells harvested from human umbilical cord blood were grown under proendothelial conditions and labeled with nanoparticles composed of two distinct PFC cores (perfluorooctylbromide and perfluoro-15-crown-5 ether).
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2006
Objective: Angiogenic expansion of the vasa vasorum is a well-known feature of progressive atherosclerosis, suggesting that antiangiogenic therapies may stabilize or regress plaques. Alpha(v)beta3 integrin-targeted paramagnetic nanoparticles were prepared for noninvasive assessment of angiogenesis in early atherosclerosis, for site-specific delivery of antiangiogenic drug, and for quantitative follow-up of response.
Methods And Results: Expression of alpha(v)beta3 integrin by vasa vasorum was imaged at 1.
Objectives: This study explored the use of F spectroscopy and imaging with targeted perfluorocarbon nanoparticles for the simultaneous identification of multiple bio-signatures at 1.5 T.
Materials And Methods: Two nanoparticle emulsions with perfluoro-15-crown-5-ether (CE) or perfluorooctylbromide (PFOB) cores were targeted in vitro to fibrin clot phantoms (n=12) in 4 progressive ratios using biotin-avidin interactions.
Arterioscler Thromb Vasc Biol
March 2006
The role of nanotechnology in cardiovascular diagnosis is expanding rapidly. The goal of this brief review is to illustrate selected examples of nanosystems that have been applied to the arenas of atherosclerosis, thrombosis, and vascular biology. The technologies for producing targeted nanosystems are multifarious and reflect end uses in many cases.
View Article and Find Full Text PDFDevelopments in genomics, proteomics, and cell biology are leading a trend toward individualized segmentation and treatment of patients based on early, noninvasive recognition of unique biosignatures. Although developments in molecular imaging have been dominated by nuclear medicine agents in the past, the advent of nanotechnology in the 1990s has led to magnetic resonance (MR) molecular agents that allow detection of sparse biomarkers with a high-resolution imaging modality that can provide both physiological and functional agents. A wide variety of nanoparticulate MR contrast agents have emerged, most of which are superparamagnetic iron oxide-based constructs.
View Article and Find Full Text PDF