Talanta
August 2024
Chemical processes in clouds have been suggested to contribute significantly to the mass of organic aerosol particles in the atmosphere. Experimental and theoretical evidence suggest that organic mass production in clouds can be substantial and depends on the concentration of organic precursor compounds available in the gas phase. The present study aims at studying the aqueous phase reactivity of one of these overlooked precursors, i.
View Article and Find Full Text PDFEquine sarcoids (EqS) are fibroblast-derived skin tumors associated with bovine papillomavirus 1 and 2 (BPV-1 and -2). Based on Southern blotting, the BPV-1 genome was not found to be integrated in the host cell genome, suggesting that EqS pathogenesis does not result from insertional mutagenesis. Hence, CRISPR/Cas9 implies an interesting tool for selectively targeting BPV-1 episomes or genetically anchored suspected host factors.
View Article and Find Full Text PDFAmong the highly oxygenated species formed in situ in the atmosphere, α-dicarbonyl compounds are the most reactive species, thus contributing to the formation of secondary organic aerosols that affect both air quality and climate. They are ubiquitous in the atmosphere and are easily transferred to the atmospheric aqueous phase due to their high solubility. In addition, α-dicarbonyl compounds are toxic compounds found in food in biochemistry studies as they can be produced endogenously through various pathways and exogenously through the Maillard reaction.
View Article and Find Full Text PDFIn this work, laboratory chamber experiments of gas-phase methyl iodide photolysis in the presence of ozone at three relative humidity conditions were performed to study the formation and physico-chemical properties of iodine oxide particles. The obtained results revealed significant morphological changes of iodine oxide particles that were observed to depend on relative humidity. The formed iodine oxide particles under dry conditions were supposed to be agglomerates of fine hygroscopic crystals.
View Article and Find Full Text PDFThe influence of the precursor chemical structure on secondary organic aerosol (SOA) formation was investigated through the study of the ozonolysis of two anthropogenic aromatic alkenes: 2-methylstyrene and indene. Experiments were carried out in three different simulation chambers: ICARE 7300L FEP Teflon chamber (ICARE, Orléans, France), EUPHORE FEP Teflon chamber (CEAM, Valencia, Spain), and CESAM evacuable stainless steel chamber (LISA, Créteil, France). For both precursors, SOA yield and growth were studied on a large range of initial concentrations (from ∼60 ppbv to 1.
View Article and Find Full Text PDFAerosol-cloud interaction contributes to the largest uncertainties in the estimation and interpretation of the Earth's changing energy budget. The present study explores experimentally the impacts of water condensation-evaporation events, mimicking processes occurring in atmospheric clouds, on the molecular composition of secondary organic aerosol (SOA) from the photooxidation of methacrolein. A range of on- and off-line mass spectrometry techniques were used to obtain a detailed chemical characterization of SOA formed in control experiments in dry conditions, in triphasic experiments simulating gas-particle-cloud droplet interactions (starting from dry conditions and from 60% relative humidity (RH)), and in bulk aqueous-phase experiments.
View Article and Find Full Text PDFAerosol and molecular processing in the atmosphere occurs in a complex and variable environment consisting of multiple phases and interfacial regions. To explore the effects of such conditions on the reactivity of chemical systems, we employ an environmental simulation chamber to investigate the multiphase photolysis of pyruvic acid, which photoreacts in the troposphere in aqueous particles and in the gas phase. Upon irradiation of nebulized pyruvic acid, acetic acid and carbon dioxide are rapidly generated, which is consistent with previous literature on the bulk phase photolysis reactions.
View Article and Find Full Text PDFPyruvic acid in the atmosphere is found in both the gas and aqueous phases, and its behavior gives insight into that of other α-keto acids. Photolysis is a significant degradation pathway for this molecule in the environment, and in aqueous solution the major photoproducts are higher-molecular-weight compounds that may contribute to secondary organic aerosol mass. The kinetics of the aqueous-phase photolysis of pyruvic acid under aerobic and anaerobic conditions was investigated in order to calculate the first-order rate constant, Jaq, in solution.
View Article and Find Full Text PDFThe heterogeneous ozonolysis of naphthalene adsorbed on XAD-4 resin was studied using an annular denuder technique. The experiments involved depositing a known quantity of naphthalene on the XAD-4 resin and then measuring the quantity of the solid naphthalene that reacted away under a constant flow of gaseous ozone (0.064 to 4.
View Article and Find Full Text PDFIn order to investigate the heterogeneous oxidation kinetics of the herbicide terbuthylazine (TERB), a stable and reproducible generation system of "dark" hydroxyl radical in the gas phase was developed and optimized using a PTR-MS. TERB was adsorbed on silica particles, which were coated on the walls of a flow tube. The hydroxyl radical was produced in the dark through the ozonolysis of 2,3-dimethyl-2-butene (DMB).
View Article and Find Full Text PDFFlash photolysis (FP) coupled with resonance fluorescence (RF) was used to measure the absolute rate coefficients for the reactions of OH(X(2)Π) radicals with C(2)H(5)I (k(1)), n-C(3)H(7)I (k(2)), and iso-C(3)H(7)I (k(3)) at temperatures between 297 and 372 K in 188 Torr of He; this represents the first temperature-dependent kinetics studies for the title reactions. The experiments involved time-resolved RF detection of the OH (A(2)Σ(+) → X(2)Π transition at λ = 308 nm) radicals following FP of H(2)O/C(2)H(5)I/He, H(2)O/n-C(3)H(7)I/He, and H(2)O/iso-C(3)H(7)I/He mixtures. The OH(X(2)Π) radicals were produced by FP of H(2)O in vacuum-UV at wavelengths λ > 120 nm.
View Article and Find Full Text PDFFlash photolysis (FP) coupled to resonance fluorescence (RF) was used to measure the absolute rate coefficients (k(1)) for the reaction of OH(X(2)Π) radicals with diiodomethane (CH(2)I(2)) over the temperature range 295-374 K. The experiments involved time-resolved RF detection of the OH (A(2)Σ(+)→X(2)Π transition at λ = 308 nm) following FP of the H(2)O/CH(2)I(2)/He mixtures. The OH(X(2)Π) radicals were produced by FP of H(2)O in the vacuum-UV at wavelengths λ > 120 nm.
View Article and Find Full Text PDFAcetone is ubiquitous in the troposphere. Several papers have focused in the past on its gas phase reactivity and its impact on tropospheric chemistry. However, acetone is also present in atmospheric water droplets where its behaviour is still relatively unknown.
View Article and Find Full Text PDFThe aim of this work is to develop and test a dynamic gas generator for semi-volatile organic compounds (SVOC). A single compound, naphthalene, is used as a surrogate PAH to test the system. The dynamic generation of PAH is based on the permeation technique [Analyst 106 (1981) 817; Am.
View Article and Find Full Text PDF