Publications by authors named "Anne McShane"

Background: In the last decade, percutaneous coronary intervention (PCI) has evolved toward the treatment of complex disease in patients with multiple comorbidities. Whilst there are several definitions of complexity, it is unclear whether there is agreement between cardiologists in classifying complexity of cases. Inconsistent identification of complex PCI can lead to significant variation in clinical decision-making.

View Article and Find Full Text PDF

Background: The application of artificial intelligence to interpret the electrocardiogram (ECG) has predominantly included the use of knowledge engineered rule-based algorithms which have become widely used today in clinical practice. However, over recent decades, there has been a steady increase in the number of research studies that are using machine learning (ML) to read or interrogate ECG data.

Objective: The aim of this study is to review the use of ML with ECG data using a time series approach.

View Article and Find Full Text PDF

Background: Treatment decisions in myocardial infarction (MI) are currently stratified by ST elevation (ST-elevation myocardial infarction [STEMI]) or lack of ST elevation (non-ST elevation myocardial infarction [NSTEMI]) on the electrocardiogram. This arose from the assumption that ST elevation indicated acute coronary artery occlusion (OMI). However, one-quarter of all NSTEMI cases are an OMI, and have a higher mortality.

View Article and Find Full Text PDF

Background: Even in the era of digital technology, several hospitals still rely on paper-based forms for data entry for patient admission, triage, drug prescriptions, and procedures. Paper-based forms can be quick and convenient to complete but often at the expense of data quality, completeness, sustainability, and automated data analytics. Digital forms can improve data quality by assisting the user when deciding on the appropriate response to certain data inputs (eg, classifying symptoms).

View Article and Find Full Text PDF

Background: A 12-lead electrocardiogram (ECG) is the most commonly used method to diagnose patients with cardiovascular diseases. However, there are a number of possible misinterpretations of the ECG that can be caused by several different factors, such as the misplacement of chest electrodes.

Objective: The aim of this study is to build advanced algorithms to detect precordial (chest) electrode misplacement.

View Article and Find Full Text PDF

Background: When a patient is suspected of having an acute myocardial infarction, they are accepted or declined for primary percutaneous coronary intervention partly based on clinical assessment of their 12-lead electrocardiogram (ECG) and ST-elevation myocardial infarction criteria.

Objective: We retrospectively determined the agreement rate between human (specialists called activator nurses) and computer interpretations of ECGs of patients who were declined for primary percutaneous coronary intervention.

Methods: Various features of patients who were referred for primary percutaneous coronary intervention were analyzed.

View Article and Find Full Text PDF

Introduction: Electrode misplacement and interchange errors are known problems when recording the 12‑lead electrocardiogram (ECG). Automatic detection of these errors could play an important role for improving clinical decision making and outcomes in cardiac care. The objectives of this systematic review and meta-analysis is to 1) study the impact of electrode misplacement on ECG signals and ECG interpretation, 2) to determine the most challenging electrode misplacements to detect using machine learning (ML), 3) to analyse the ML performance of algorithms that detect electrode misplacement or interchange according to sensitivity and specificity and 4) to identify the most commonly used ML technique for detecting electrode misplacement/interchange.

View Article and Find Full Text PDF

This article retrospectively analyses a primary percutaneous coronary intervention dataset comprising patient referrals that were accepted for percutaneous coronary intervention and those who were turned down between January 2015 and December 2018 at Altnagelvin Hospital (United Kingdom). Time series analysis of these referrals was undertaken for analysing the referral rates per year, month, day and per hour. The overall referrals have 70 per cent (n = 1466, p < 0.

View Article and Find Full Text PDF

Background: Acute Coronary Syndrome (ACS) is currently diagnosed using a 12‑lead Electrocardiogram (ECG). Our recent work however has shown that interpretation of the 12‑lead ECG is complex and that clinicians can be sub-optimal in their interpretation. Additionally, ECG does not always identify acute total occlusions in certain patients.

View Article and Find Full Text PDF

Background: Electrocardiogram (ECG) lead misplacement can adversely affect ECG diagnosis and subsequent clinical decisions. V1 and V2 are commonly placed superior of their correct position. The aim of the current study was to use machine learning approaches to detect V1 and V2 lead misplacement to enhance ECG data quality.

View Article and Find Full Text PDF

Increased fracture displacement has previously been described with the application of pelvic circumferential compression devices (PCCDs) in patients with lateral compression-type pelvic fracture. We describe the first reported case of hemodynamic deterioration temporally associated with the prehospital application of a PCCD in a patient with a complex acetabular fracture with medial displacement of the femoral head. Active hemorrhage from a site adjacent to the acetabular fracture was subsequently demonstrated on angiography.

View Article and Find Full Text PDF