Hydrogen storage in intermetallic compounds, known as solid-state storage, relies on a phase change by the metal alloy. This phenomenon causes a violent change in volume at the crystalline scale, inducing a change of volume for the millimetric particles and, with time, important stresses on the tanks. It is thus necessary to know the mechanical behavior of the material to report these phenomena and improve the tanks' reliability.
View Article and Find Full Text PDFSingle crystalline silicon fractures on low-energy cleavage planes such as (111) and (110). The crack propagation cannot accurately be predicted by linear elastic fracture mechanics since it does not account for small scale and inelastic phenomena such as atomic lattice trapping. Here we show that, under pure bending load, (110) cleavage in silicon single crystal rapidly accelerates to 3700 m/s without crack path deviation or crack branching, contrasting previous observations.
View Article and Find Full Text PDF