Publications by authors named "Anne Marie Charvet"

Iodine-containing contrast media (ICM) are extensively used to improve image quality and information content in x-ray-based examinations, particularly in computed tomography (CT). In parallel, there is increasing evidence that the use of ICM during CT sessions is associated with deoxyribonucleic acid (DNA) breaks that may influence the estimation of the risks linked to x-ray exposure. Why has iodine been preferred to any other heavy elements to enhance contrast in radiodiagnostics? How to understand such DNA breaks effect? We searched for the answers in the early times of x-ray medical use.

View Article and Find Full Text PDF

Synchrotrons are capable of producing intense low-energy X-rays that enable the photoactivation of high-Z elements. Photoactivation therapy (PAT) consists of loading tumors with photoactivatable drugs and thereafter irradiating them at an energy, generally close to the K-edge of the element, that enhances the photoelectric effect. To date, three major photoactivatable elements are used in PAT: platinum (cisplatin and carboplatin), iodine (iodinated contrast agents and iododeoxyuridine) and gadolinium (motexafin gadolinium).

View Article and Find Full Text PDF

For the past 5 years, a radio-chemotherapy approach based on the photoactivation of platinum atoms (PAT-Plat) consisting of treating tumors with platinated compounds and irradiating them above the platinum K edge (78.4 keV) has been developed at the European Synchrotron Radiation Facility (Grenoble, France). Compared to other preclinical modalities, PAT-Plat provides the highest survivals of rats bearing the rodent F98 glioma.

View Article and Find Full Text PDF

DNA is a key-target for genotoxic stress. Hence, the knowledge of induction and repair rate of DNA damage are crucial to describe and predict the impact of stress situations. Unfortunately, DNA damage induction and repair rates are generally assessed separately whereas they act either concomitantly or transiently in living organisms.

View Article and Find Full Text PDF

Despite a considerable amount of data, evaluation of the potential genotoxicity and cancer proneness of lead compounds remains unclear, probably due to the plethora of experimental procedures, biological endpoints and cellular models used. In parallel, the understanding in DNA damage formation, repair and signaling has considerably progressed all along these last years, notably for DNA double-strand breaks (DSBs). Here, were examined DNA damage formation and repair in human cells exposed to lead nitrate (Pb(NO(3))(2)) and their consequences upon the ATM-dependent stress signaling, cell cycle progression and cell death.

View Article and Find Full Text PDF

Purpose: Heavy-atom-enhanced synchrotron stereotactic radiotherapy (SSR) is a treatment that involves selective accumulation of high-Z elements in tumors followed by stereotactic irradiation with X-rays from a synchrotron source. The purpose of this study was to determine whether the efficacy of iodine-enhanced SSR could be further improved in the F98 rodent glioma model, by using a concomitant injection of an iodinated contrast agent and a transient blood-brain barrier opener (mannitol) during irradiation.

Methods And Materials: Fourteen days after intracerebral inoculations of F98 cells, the rats were irradiated with 50-keV X-rays while receiving an infusion of hyperosmotic mannitol with iodine, either intravenously or via the carotid (9 to 15 rats per group, 117 rats total).

View Article and Find Full Text PDF

Purpose: To date, iodinated contrast agents (ICA) are commonly used in medical imaging to improve tumor visualization by attenuating scanners X-rays. However, some adverse reactions to ICAs are still reported, and their molecular origin remains unclear. In 1983, it was proposed to visualize and treat ICA-loaded tumors by using scanners as therapy machines to enhance X-rays absorption at the iodine atoms.

View Article and Find Full Text PDF

There is a large body of evidence that stress-induced DNA damage may be responsible for cell lethality, cancer proneness and/or immune reaction. However, statistical features of their repair rate remain poorly documented. In order to interpret the shape of the radiation-induced DNA damage repair curves with a minimum of biological assumptions, we introduced the concept of repair probability, specific to any individual radiation-induced DNA damage, whatever its biochemical type.

View Article and Find Full Text PDF

An experimental binary radiotherapy proposes the concomitant use of a high-Z compound and synchrotron X rays for enhancing radiation dose selectively in tumours by a photoelectric effect. This study aimed at measuring the resulting dose enhancement in irradiated material. A doped Fricke gel dosemeter model was manufactured with 10 mg ml(-1) of iodine (Telebrix) or barium (Micropaque).

View Article and Find Full Text PDF

Purpose: Synchrotron stereotactic radiotherapy (SSR) is a binary cancer treatment modality that involves the selective accumulation of a high Z element, such as iodine, in tumors, followed by stereotactic irradiation with kilovoltage X-rays from a synchrotron source. The success of SSR is directly related to the absolute amount of iodine achievable in the tumor. The purposes of this preclinical study were to determine whether the delivery of iodine to brain tumor models in rats could be enhanced by the means of its intracarotid injection with or without a hyperosmotic solution and to evaluate corresponding absorbed X-ray doses.

View Article and Find Full Text PDF

The authors previously provided evidence of synchrotron radiation computed tomography (SRCT) efficacy for quantitative in vivo brain perfusion measurements using monochromatic X-ray beams. However, this technique was limited for small-animal studies by partial volume effects. In this paper, high-resolution absolute cerebral blood volume and blood-brain barrier permeability coefficient measurements were obtained on a rat glioma model using SRCT and a CCD camera (47x47 microm2 pixel size).

View Article and Find Full Text PDF

Rationale And Objectives: Monochromatic quantitative computed tomography allows a nondestructive and quantitative measurement of gadolinium (Gd) concentration. This technique was used in the C6 rat glioma model to compare gadopentetate dimeglumine and gadobutrol.

Methods: Rats bearing late-stage gliomas received 2.

View Article and Find Full Text PDF

High-grade gliomas are usually of poor prognosis, and conventional radiotherapy, even combined with chemotherapy, still fails to improve the survival of patients. Here, we propose an innovative therapeutic approach combining synchrotron radiation with cis-diamminedichloroplatinum (II) (CDDP). As suggested previously, monochromatic synchrotron irradiation of CDDP at 78.

View Article and Find Full Text PDF

Purpose: Enhancement of the radiation dose delivered to a brain tumor can be achieved by infusing an iodinated contrast agent to the patient and irradiating with kilovoltage X-rays in computed tomography (CT) mode. Synchrotron sources, providing monochromatic tunable intense beams, are ideal for this treatment. The aim of this study is to assess in vivo the efficiency of this novel radiotherapy modality, Synchrotron Radiation CT-Therapy.

View Article and Find Full Text PDF

Combination of cis-platinum with ionizing radiation is one of the most promising anticancer treatments that appears to be more efficient than radiotherapy alone. Unlike conventional X-ray emitters, accelerators of high energy particles like synchrotrons display powerful and monochromatizable radiation that makes the induction of an Auger electron cascade in cis-platinum molecules [also called photoactivation of cis-platinum (PAT-Plat)] theoretically possible. Here, we examined the molecular consequences of one of the first attempts of synchrotron PAT-Plat, performed at the European Synchrotron Research Facility (Grenoble-France).

View Article and Find Full Text PDF

Synchrotron radiation computed tomography opens new fields by using monochromatic x-ray beams. This technique allows one to measure in vivo absolute contrast-agent concentrations with high accuracy and precision, and absolute cerebral blood volume or flow can be derived from these measurements using tracer kinetic methods. The authors injected an intravenous bolus of an iodinated contrast agent in healthy rats, and acquired computed tomography images to follow the temporal evolution of the contrast material in the blood circulation.

View Article and Find Full Text PDF