Neural representations for visual stimuli typically emerge with a bilateral distribution across occipitotemporal cortex (OTC)? Pediatric patients undergoing unilateral OTC resection offer an opportunity to evaluate whether representations for visual stimulus individuation can sufficiently develop in a single OTC. Here, we assessed the non-resected hemisphere of patients with pediatric resection within ( = 9) and outside ( = 12) OTC, as well as healthy controls' two hemispheres ( = 21). Using functional magnetic resonance imaging, we mapped category selectivity (CS), and representations for visual stimulus individuation (for faces, objects, and words) with repetition suppression (RS).
View Article and Find Full Text PDFThe topographic organization of category-selective responses in human ventral occipitotemporal cortex (VOTC) and its relationship to regions subserving language functions is remarkably uniform across individuals. This arrangement is thought to result from the clustering of neurons responding to similar inputs, constrained by intrinsic architecture and tuned by experience. We examined the malleability of this organization in individuals with unilateral resection of VOTC during childhood for the management of drug-resistant epilepsy.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
August 2024
Touch is an essential form of non-verbal communication. While language and its neural basis are widely studied, tactile communication is less well understood. We used fMRI and multivariate pattern analyses in pairs of emotionally close adults to examine the neural basis of human-to-human tactile communication.
View Article and Find Full Text PDFIn the typically developing (TD) brain, neural representations for visual stimulus categories (e.g., faces, objects, and words) emerge in bilateral occipitotemporal cortex (OTC), albeit with weighted asymmetry; in parallel, recognition behavior continues to be refined.
View Article and Find Full Text PDFImportance: Structural integrity of cortex following cortical resection for epilepsy management has been previously characterized, but only in adult patients.
Objective: This study sought to determine whether morphometrics of the preserved hemisphere in pediatric cortical resection patients differ from non-neurological controls.
Design: This was a case-control study, from 2013-2022.
Unmyelinated low-threshold mechanoreceptors (C-tactile, CT) in the human skin are important for signaling information about hedonic aspects of touch. We have previously reported that CT-targeted brush stroking by means of a robot reduces experimental mechanical pain. To improve the ecological validity of the stimulation, we developed standardized human-human touch gestures for signaling attention and calming.
View Article and Find Full Text PDFNeural mechanisms of touch are typically studied in laboratory settings using robotic or other types of well-controlled devices. Such stimuli are very different from highly complex naturalistic human-to-human touch interactions. The lack of scientifically useful naturalistic stimuli hampers progress, particularly in social touch research.
View Article and Find Full Text PDFThe nucleus tractus solitarius (NTS) is a key brainstem structure relaying interoceptive peripheral information to the interrelated brain centres for eliciting rapid autonomic responses and for shaping longer-term neuroendocrine and motor patterns. Structural and functional NTS' connectivity has been extensively investigated in laboratory animals. But there is limited information about NTS' connectome in humans.
View Article and Find Full Text PDFChronic pain and depression are two frequently co-occurring and debilitating conditions. Even though the former is treated as a physical affliction, and the latter as a mental illness, both disorders closely share neural substrates. Here, we review the association of pain with depression, especially when symptoms are lateralized on either side of the body.
View Article and Find Full Text PDFDespite the relative successes in the surgical treatment of pharmacoresistant epilepsy, there is rather little research on the neural (re)organization that potentially subserves behavioral compensation. Here, we examined the post-surgical functional connectivity (FC) in children and adolescents who have undergone unilateral cortical resection and, yet, display remarkably normal behavior. Conventionally, FC has been investigated in terms of the mean correlation of the BOLD time courses extracted from different brain regions.
View Article and Find Full Text PDFChildren with unilateral resections of ventral occipito-temporal cortex (VOTC) typically do not evince visual perceptual impairments, even when relatively large swathes of VOTC are resected. In search of possible explanations for this behavioral competence, we evaluated white matter microstructure and connectivity in eight pediatric epilepsy patients following unilateral cortical resection and 15 age-matched controls. To uncover both local and broader resection-induced effects, we analyzed tractography data using two complementary approaches.
View Article and Find Full Text PDFWe demonstrate experimentally a technique for the numerical correction of an optical vortex with a unitary topological charge. A developed algorithm based on the axial behavior of a reconstructed wavefront is used in the detection of the optical vortex. Optimizations of the number of axial phase maps and the window size used in the algorithm yield the precise coordinates of the vortex eye.
View Article and Find Full Text PDFSpeckle intensity measurements utilized for phase retrieval (PR) are sequentially taken with a digital camera, which introduces quantization error that diminishes the signal quality. Influences of quantization on the speckle intensity distribution and PR are investigated numerically and experimentally in the static wavefront sensing setup. Results show that 3 to 4 bits are adequate to represent the speckle intensities and yield acceptable reconstructions at relatively fast convergence rates.
View Article and Find Full Text PDFWavefront reconstruction is carried out using sequentially recorded speckle patterns and an iterative phase retrieval method based on wave propagation. A novel fast-convergent algorithm that maintains the propagation distance in the iteration step equal to the distance between measurement planes is demonstrated. Employing the new algorithm, influences of the number of measurement planes, number of iterations, and uncertainties in the detector's transverse and axial positions on the rate of phase convergence are analyzed experimentally.
View Article and Find Full Text PDF