Phosphorothioate-substitution experiments are often used to elucidate functionally important metal ion-binding sites on RNA. All previous experiments with S(P)-phosphorothioate-substituted RNAs have been done in the absence of structural information for this particular diastereomer. Yeast U6 RNA contains a metal ion-binding site that is essential for spliceosome function and includes the pro-S(P) oxygen 5' of U(80).
View Article and Find Full Text PDFU6 RNA is essential for nuclear pre-mRNA splicing and has been implicated directly in catalysis of intron removal. The U80G mutation at the essential magnesium binding site of the U6 3' intramolecular stem-loop region (ISL) is lethal in yeast. To further understand the structure and function of the U6 ISL, we have investigated the structural basis for the lethal U80G mutation by NMR and optical spectroscopy.
View Article and Find Full Text PDFU6 RNA is a key component of the catalytic core of the spliceosome. A metal ion essential for the first catalytic step of pre-mRNA splicing binds to the U80 Sp phosphate oxygen within the yeast U6 intramolecular stem-loop (ISL). Here we present the first structural data for U6 RNA, revealing the three-dimensional structure of the highly conserved U6 ISL.
View Article and Find Full Text PDF