Although the observation of major histocompatibility complex II (MHCII) receptors on T cells is longstanding, the explanation for this occurrence remains enigmatic. Reports of an inducible, endogenous expression exist, as do studies demonstrating a protein acquisition from other cells by mechanisms including vesicle transfer. Irrespective of origin, the presence of the human MHCII isotype, human leukocyte antigen DR (HLA-DR), potentially identifies a regulatory T cell population.
View Article and Find Full Text PDFExtracellular vesicles (EVs) have a demonstrated involvement in modulating the immune system. It has been proposed that EVs could be used as biomarkers for detection of inflammatory and immunological disorders. Consequently, it is of great interest to investigate EVs in more detail with focus on immunological markers.
View Article and Find Full Text PDFAppropriate and well-documented cell-culturing systems are necessary to study the activity and biological function of extracellular vesicles (EVs). The aim of this study was to describe an experimental system, in which dynamic, vesicle-based cell communication can be investigated. A commercially available cell-culturing system was applied to study contact-independent cell communication, which separated two cell populations using a membrane with a pore size of 0.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are one of several tools that cells use to communicate with each other. This communication is facilitated by a number of surface-associated proteins and the cargo of the vesicles. For several cancer types, the amount of EVs is observed to be up-regulated in patients compared to healthy individuals, possibly signifying the presence of an aberrant process.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are a heterogeneous population of membrane-enclosed vesicles. EVs are recognized as important players in cell-to-cell communication and are described to be involved in numerous biological and pathological processes. The fact that EVs are involved in the development and progression of several diseases has formed the basis for the use of EV analysis in a clinical setting.
View Article and Find Full Text PDFPurpose: Extracellular vesicles (EVs) are small, membrane-enclosed entities released from cells in many different biological systems. These vesicles play an important role in cellular communication by virtue of their protein, RNA, and lipid content, which can be transferred among cells. The complement of biomolecules reflects the parent cell, and their characterization may provide information about the presence of an aberrant process.
View Article and Find Full Text PDF