We propose a single-shot, high-repetition rate measurement scheme of the carrier-envelope phase offset of ultrashort laser pulses. The spectral fringes resulting from f-2f nonlinear interferometry, encoding the carrier-envelope-phase, are evaluated completely optically via an optical Fourier transform. For demonstration, the carrier-envelope-phase of a 200 kHz, few-cycle optical parametric chirped-pulse amplification (OPCPA) laser system was measured employing an interferometer as a periodic optical filter.
View Article and Find Full Text PDFFew-cycle pulses present an essential tool to track ultrafast dynamics in matter and drive strong field effects. To address photon-hungry applications, high average power lasers are used which, however, cannot directly provide sub-100-fs pulse durations. Post-compression of laser pulses by spectral broadening and dispersion compensation is the most efficient method to overcome this limitation.
View Article and Find Full Text PDFWe present a compact, few-cycle, short-wave infrared light source delivering 13 µJ, carrier-envelope phase (CEP) stable pulses around 2 µm, operating at 200 kHz repetition rate. Starting from an ytterbium fiber amplifier, the seed is produced via white-light generation followed by difference frequency generation, and later amplified in two BiBO nonlinear crystals. A pulse duration of 15.
View Article and Find Full Text PDFThe output of a 200kHz, 34W, 300fs ytterbium amplifier is compressed to 31fs with >88 efficiency to reach a peak power of 2.5GW, which to date is a record for a single-stage bulk multi-pass cell. Despite operation 80 times above the critical power for self-focusing in bulk material, the setup demonstrates excellent preservation of the input beam quality.
View Article and Find Full Text PDFNonlinear pulse post-compression represents an efficient method for ultrashort, high-quality laser pulse production. The temporal pulse quality is, however, limited by amplitude and phase modulations intrinsic to post-compression. We here characterize in frequency and time domain with high dynamic range individual post-compressed pulses within laser bursts comprising 100-kHz-rate pulse trains.
View Article and Find Full Text PDFThis paper reports on nonlinear spectral broadening of 1.1 ps pulses in a gas-filled multi-pass cell to generate sub-100 fs optical pulses at 1030 nm and 515 nm at pulse energies of 0.8 mJ and 225 µJ, respectively, for pump-probe experiments at the free-electron laser FLASH.
View Article and Find Full Text PDFIn this work, we demonstrate postcompression of 1.2 ps laser pulses to 13 fs via gas-based multipass spectral broadening. Our results yield a single-stage compression factor of about 40 at 200 W in-burst average power and a total compression factor >90 at reduced power.
View Article and Find Full Text PDFThe frequency modulation transfer property of a backward-wave optical parametric oscillator (BWOPO) is investigated in the context of near-IR pulse compression. The maximum transferrable bandwidth from the pump to the forward wave in a BWOPO is determined by the group dispersion mismatch. In comparison, the third-order phase introduced in a single-grating compressor setup is more detrimental to achieve optimum compression of the BWOPO forward wave.
View Article and Find Full Text PDFThe strict momentum conservation constraints for backward-wave optical parametric oscillators (BWOPOs) gives an inherently narrowband backward-generated wave, even with broadband pumping. Unfortunately, the limited tuning range of this wave restricts potential applications. Here we demonstrate a method to circumvent this restriction and increase the tuning range by more than one order of magnitude.
View Article and Find Full Text PDFStrongly enhanced backward stimulated polariton scattering (BSPS) is demonstrated in periodically-poled KTiOPO (KTP) crystals with a high power-conversion efficiency up to 70%. We study the physical mechanism of such counter-propagating parametric interaction with phonon-polaritons in χ modulated structures. BSPS is a three-wave mixing that is distinguished from backward stimulated Raman scattering (BSRS), while a strong absorption at large polariton wave-vectors can still make BSPS display certain characteristics of BSRS such as self-compression of the Stokes pulse.
View Article and Find Full Text PDFMirrorless optical parametric oscillators (MOPOs) are very attractive parametric devices that rely on the nonlinear interaction of counter-propagating photons to inherently establish distributed feedback, without the use of external mirrors or surface coatings. These devices offer unique spectral and coherence properties that will benefit a large variety of applications ranging from spectroscopy to quantum communications. The major obstacle in exploiting their full potential is ascribed to the difficulty in engineering a nonlinear material in which the generation of counter-propagating waves can be phase matched.
View Article and Find Full Text PDFWe describe here what is, to the best of our knowledge, the first LED pumped Nd:YVO₄ laser. Near-IR LED arrays with a wavelength centered close to 850 nm were used to pump transversely the crystal. By pulsing LEDs, with a duration of the order of the laser transition lifetime, we obtained sufficient pump intensities to reach the laser threshold.
View Article and Find Full Text PDF