Ischemic stroke is the second leading cause of death worldwide. Following ischemic stroke, Neurovascular Unit (NVU) inflammation and peripheral leucocytes infiltration are major contributors to the extension of brain lesions. For a long time restricted to neurons, the 10 past years have shown the emergence of an increasing number of studies focusing on the role of Cyclin-Dependent Kinases (CDKs) on the other cells of NVU, as well as on the leucocytes.
View Article and Find Full Text PDFStroke is a leading cause of acute death related in part to brain oedema, blood-brain barrier disruption and glial inflammation. A cyclin-dependant kinase inhibitor, (S)-roscovitine, was administered 90 min after onset on a model of rat focal cerebral ischaemia. Brain swelling and Evans Blue tissue extravasation were quantified after Evans Blue injection.
View Article and Find Full Text PDFStroke is a devastating disorder that significantly contributes to death, disability and healthcare costs. In ischemic stroke, the only current acute therapy is recanalization, but the narrow therapeutic window less than 6 h limits its application. The current challenge is to prevent late cell death, with concomitant therapy targeting the ischemic cascade to widen the therapeutic window.
View Article and Find Full Text PDFStudies suggest that eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and vitamin A are critical to delay aged-related cognitive decline. These nutrients regulate gene expression in the brain by binding to nuclear receptors such as the retinoid X receptors (RXRs) and the retinoic acid receptors (RARs). Moreover, EPA/DHA and retinoids activate notably kinase signaling pathways such as AKT or MAPK, which includes ERK1/2.
View Article and Find Full Text PDFn-3 Long-chain PUFA (n-3 LC-PUFA), particularly EPA and DHA, play a key role in the maintenance of brain functions such as learning and memory that are impaired during ageing. Ageing is also associated with changes in the DHA content of brain membranes that could contribute to memory impairment. Limited studies have investigated the effects of ageing and n-3 LC-PUFA supplementation on both blood and brain fatty acid compositions.
View Article and Find Full Text PDF