Publications by authors named "Anne Laure Gamblin"

A major limitation of the 2D culture systems is that they fail to recapitulate the in vivo 3D cellular microenvironment whereby cell-cell and cell-extracellular matrix (ECM) interactions occur. In this paper, a biomaterial scaffold that mimics the structure of collagen fibers was produced by jet-spraying. This micro-fiber polycaprolactone (PCL) scaffold was evaluated for 3D culture of human bone marrow mesenchymal stromal cells (MSCs) in comparison with a commercially available electrospun scaffold.

View Article and Find Full Text PDF

Different macrophage depletion strategies have demonstrated a vital role of macrophages in bone healing, but the underlying molecular mechanisms are poorly understood. Here, with the use of a mouse model of tibia injury, we found that the cytokine oncostatin M [OSM or murine (m)OSM] was overexpressed during the initial inflammatory phase and that depletion of macrophages repressed mOSM expression. In Osm(-/-) mice, by micro-computed tomography and histology we observed a significant reduction in the amount of new intramedullar woven bone formed at the injured site, reduced number of Osterix(+) osteoblastic cells, and reduced expression of the osteoblast markers runt-related transcription factor 2 and alkaline phosphatase.

View Article and Find Full Text PDF

The pathologies of the skeleton have a significant socioeconomic impact on our population. Although therapies have improved the treatment of osteosarcoma and osteoporosis, their efficacy still remains limited. In this context, we developed a miniaturized 3-D culture model of bone cells on calcium phosphate ceramics.

View Article and Find Full Text PDF

Human mesenchymal stem cells (hMSC) have immunomodulative properties and, associated with calcium phosphate (CaP) ceramics, induce bone tissue repair. However, the mechanisms of osteoinduction by hMSC with CaP are not clearly established, in particular the role of osteoclasts and macrophages. Biphasic calcium phosphate (BCP) particles were implanted with or without hMSC in the paratibial muscles of nude mice.

View Article and Find Full Text PDF

The major cardiac voltage-gated sodium channel Nav1.5 associates with proteins that regulate its biosynthesis, localization, activity and degradation. Identification of partner proteins is crucial for a better understanding of the channel regulation.

View Article and Find Full Text PDF

Bone graft substitutes such as calcium phosphates are subject to the innate inflammatory reaction, which may bear important consequences for bone regeneration. We speculate that the surface architecture of osteoinductive β-tricalcium phosphate (TCP) stimulates the differentiation of invading monocyte/macrophages into osteoclasts, and that these cells may be essential to ectopic bone formation. To test this, porous TCP cubes with either submicron-scale surface architecture known to induce ectopic bone formation (TCPs, positive control) or micron-scale, non-osteoinductive surface architecture (TCPb, negative control) were subcutaneously implanted on the backs of FVB strain mice for 12 weeks.

View Article and Find Full Text PDF