Publications by authors named "Anne L Soerensen"

Temporal and spatial variability of per- and polyfluoroalkyl substances (PFASs) in herring, cod, eelpout, and guillemot covering four decades and more than 1000 km in the Baltic Sea was investigated to evaluate the effect of PFAS regulations and residence times of PFASs. Overall, PFAS concentrations responded rapidly to recent regulations but with some notable basin- and homologue-specific variability. The well-ventilated Kattegat and Bothnian Bay showed a faster log-linear decrease for most PFASs than the Baltic Proper, which lacks a significant loss mechanism.

View Article and Find Full Text PDF

Widespread persistent contaminants are a global environmental problem. In the Baltic Sea, wildlife contamination was first noticed in the 1960s, prompting the Swedish Environmental Protection Agency to establish a comprehensive Swedish National Monitoring Programme for Contaminants in Marine Biota (MCoM) in 1978 run by the Swedish Museum of Natural History. Eight species have been analysed, four fish species (Atlantic herring, Atlantic cod, European perch, viviparous eelpout), one bivalve species (blue mussel), and egg from three bird species (common guillemot, common tern, Eurasian oystercatcher).

View Article and Find Full Text PDF

The cross-shelf distributions of total mercury (THg), methylmercury (MeHg) and organic and inorganic matter, as well as the presence of the hgcA gene were investigated on the East Siberian Shelf (ESS) to understand the processes underlying the speciation of sedimentary Hg. Samples were collected from 12 stations grouped into four zones based on water depth: inner shelf (5 stations), mid-shelf (3 stations), outer shelf (2 stations), and slope (2 stations). The THg concentration in the surface sediment increased from the inner shelf (0.

View Article and Find Full Text PDF

Identifying Hg sources to aquatic ecosystems and processes controlling the levels of monomethylmercury (MMHg) is critical for developing efficient policies of Hg emissions reduction. Here we measured Hg concentrations and stable isotopes in sediment, seston, and fishes from the various basins of the Baltic Sea, a large brackish ecosystem presenting extensive gradients in salinity, redox conditions, dissolved organic matter (DOM) composition, and biological activities. We found that Hg mass dependent fractionation (Hg-MDF) values in sediments mostly reflect a mixing between light terrestrial Hg and heavier industrial sources, whereas odd Hg isotope mass independent fractionation (odd Hg-MIF) reveals atmospheric inputs.

View Article and Find Full Text PDF

Temporal and spatial trends of 15 per- and polyfluoroalkyl substances (PFAS) were determined in white-tailed sea eagle (WTSE) eggs () from two inland and two coastal regions of Sweden between 1969 and 2021. PFAS concentrations generally increased from ∼1969 to ∼1990s-2010 (depending on target and site) and thereafter plateaued or declined, with perfluorooctane sulfonamide (FOSA) and perfluorooctane sulfonate (PFOS) declining faster than most perfluoroalkyl carboxylic acids (PFCAs). The net result was a shift in the PFAS profile from PFOS-dominant in 1969-2010 to an increased prevalence of PFCAs over the last decade.

View Article and Find Full Text PDF

Fish tissue levels have to comply with environmental quality standards (EQSs) within the European Water Framework Directive. However, within monitoring, contaminants are sometimes measured in a different tissue than the tissue for which the environmental (whole fish) or human (fillet (equivalent to muscle tissue)) quality standard is set. Tissue conversion factors (k), describing the relationship between concentrations in different tissues, can be used to obtain a quality standard for the appropriate tissue.

View Article and Find Full Text PDF

Arctic rivers deliver ~40 t yr of mercury (Hg) to the Arctic Ocean, ~6 % of which is from the Mackenzie River Basin (MRB), a region warming at ~3 times the mean hemispheric rate. How this will affect Hg transfer to ecosystems of the Beaufort Sea is a worrying issue. To help address this question, we analyzed >500 measurements of Hg and other water properties from 22 rivers collected in 2012-2018 by communities of the MRB.

View Article and Find Full Text PDF

Neurotoxic methylmercury (MeHg) is formed by microbial methylation of inorganic divalent Hg (Hg) and constitutes severe environmental and human health risks. The methylation is enabled by and genes, but it is not known if the associated molecular-level processes are rate-limiting or enable accurate prediction of MeHg formation in nature. In this study, we investigated the relationships between genes and MeHg across redox-stratified water columns in the brackish Baltic Sea.

View Article and Find Full Text PDF

Arctic mercury (Hg) concentrations respond to changes in anthropogenic Hg emissions and environmental change. This manuscript, prepared for the 2021 Arctic Monitoring and Assessment Programme Mercury Assessment, explores the response of Arctic Ocean Hg concentrations to changing primary Hg emissions and to changing sea-ice cover, river inputs, and net primary production. To do this, we conduct a model analysis using a 2015 Hg inventory and future anthropogenic Hg emission scenarios.

View Article and Find Full Text PDF

Selenium (Se) has a narrow range between nutritionally optimal and toxic concentrations for many organisms, including fish and humans. However, the degree to which humans are affecting Se concentrations in coastal food webs with diffuse Se sources is not well described. Here we examine large-scale drivers of spatio-temporal variability in Se concentration in herring from the Baltic Sea (coastal sea) to explore the anthropogenic impact on a species from the pelagic food web.

View Article and Find Full Text PDF

The Arctic environment harbors a complex mosaic of mercury (Hg) and carbon (C) reservoirs, some of which are rapidly destabilizing in response to climate warming. The sources of riverine Hg across the Mackenzie River basin (MRB) are uncertain, which leads to a poor understanding of potential future release. Measurements of dissolved and particulate mercury (DHg, PHg) and carbon (DOC, POC) concentration were performed, along with analyses of Hg stable isotope ratios (incl.

View Article and Find Full Text PDF

Background: Digital breast tomosynthesis (DBT) improves breast cancer (BC) detection compared to mammography, however, it is unknown whether this reduces (ICR) at follow-up.

Methods: Using (IPD) from DBT screening studies (identified via periodic literature searches July 2016 to November 2019) we performed an IPD meta-analysis. We estimated ICR for DBT-screened participants and the difference in pooled ICR for DBT and mammography-only screening, and compared interval BC characteristics.

View Article and Find Full Text PDF

Methylmercury (MeHg), a neurotoxic compound biomagnifying in aquatic food webs, can be a threat to human health via fish consumption. However, the composition and distribution of the microbial communities mediating the methylation of mercury (Hg) to MeHg in marine systems remain largely unknown. In order to fill this knowledge gap, we used the Baltic Sea Reference Metagenome (BARM) dataset to study the abundance and distribution of the genes involved in Hg methylation (the gene cluster).

View Article and Find Full Text PDF

Biological concentrations of methylmercury (MeHg) are elevated throughout the Arctic Ocean; however, to date, the major sources and the spatial variability of MeHg are not well quantified. To identify the major inputs and outputs of MeHg to the Arctic shelf water column, we measured MeHg concentrations in the seawater and sediment samples from the East Siberian Sea collected from August to September 2018. We found that the MeHg concentrations in seawater and pore water were higher on the slope than on the shelf, while the MeHg concentrations in the sediment were higher on the shelf than on the slope.

View Article and Find Full Text PDF

Unlabelled: In Denmark, osteoporosis treatment is either handled by general practitioners or at more resource demanding specialist clinics. We evaluated the treatment adherence and persistence in the two settings, which were overall similar. The type of medical support did, however, differ and was provided to two very different patient populations.

View Article and Find Full Text PDF

Methylmercury (MeHg) is a potent neurotoxin that biomagnifies in marine food webs. Inorganic mercury (Hg) methylation is conducted by heterotrophic bacteria inhabiting sediment or settling detritus, but endogenous methylation by the gut microbiome of animals in the lower food webs is another possible source. We examined the occurrence of the bacterial gene (hgcA), required for Hg methylation, in the guts of dominant zooplankters in the Northern Baltic Sea.

View Article and Find Full Text PDF

Cellular uptake of dissolved methylmercury (MeHg) by phytoplankton is the most important point of entry for MeHg into aquatic food webs. However, the process is not fully understood. In this study we investigated the influence of chemical speciation on rate constants for MeHg accumulation by the freshwater green microalga .

View Article and Find Full Text PDF

Air-sea exchange of mercury (Hg) is the largest flux between Earth system reservoirs. Global models simulate air-sea exchange based either on an atmospheric or ocean model simulation and treat the other media as a boundary condition. Here we develop a new modeling capability (NJUCPL) that couples GEOS-Chem (atmospheric model) and MITgcm (ocean model) at the native hourly model time step.

View Article and Find Full Text PDF

Methylmercury (MeHg) accumulation in marine organisms poses serious ecosystem and human health risk, yet the sources of MeHg in the surface and subsurface ocean remain uncertain. Here, we report the first MeHg mass budgets for the Western Pacific Ocean estimated based on cruise observations. We found the major net source of MeHg in surface water to be vertical diffusion from the subsurface layer (1.

View Article and Find Full Text PDF

Eutrophication is expanding worldwide, but its implication for production and bioaccumulation of neurotoxic monomethylmercury (MeHg) is unknown. We developed a mercury (Hg) biogeochemical model for the Baltic Sea and used it to investigate the impact of eutrophication on phytoplankton MeHg concentrations. For model evaluation, we measured total methylated Hg (MeHg) in the Baltic Sea and found low concentrations (39 ± 16 fM) above the halocline and high concentrations in anoxic waters (1249 ± 369 fM).

View Article and Find Full Text PDF

Elevated levels of neurotoxic methylmercury in Arctic food-webs pose health risks for indigenous populations that consume large quantities of marine mammals and fish. Estuaries provide critical hunting and fishing territory for these populations, and, until recently, benthic sediment was thought to be the main methylmercury source for coastal fish. New hydroelectric developments are being proposed in many northern ecosystems, and the ecological impacts of this industry relative to accelerating climate changes are poorly characterized.

View Article and Find Full Text PDF

Air-sea exchange of elemental mercury (Hg(0)) is a critical component of the global biogeochemical Hg cycle. To better understand variability in atmospheric and oceanic Hg(0), we collected high-resolution measurements across large gradients in seawater temperature, salinity, and productivity in the Pacific Ocean (20°N-15°S). We modeled surface ocean Hg inputs and losses using an ocean general circulation model (MITgcm) and an atmospheric chemical transport model (GEOS-Chem).

View Article and Find Full Text PDF

Accurately characterizing net evasion of elemental mercury (Hg(0)) from marine systems is essential for understanding the global biogeochemical mercury (Hg) cycle and the pool of divalent Hg (Hg(II)) available for methylation. Few high resolution measurements of Hg(0) are presently available for constraining global and regional flux estimates and for understanding drivers of spatial and temporal variability in evasion. We simultaneously measured high-resolution atmospheric and surface seawater Hg(0) concentrations as well as the total Hg distribution during six cruises in the West Atlantic Ocean between 2008 and 2010 and examined environmental factors affecting net Hg(0) formation and evasion.

View Article and Find Full Text PDF

Anthropogenic activities have enriched mercury in the biosphere by at least a factor of three, leading to increases in total mercury (Hg) in the surface ocean. However, the impacts on ocean fish and associated trends in human exposure as a result of such changes are less clear. Here we review our understanding of global mass budgets for both inorganic and methylated Hg species in ocean seawater.

View Article and Find Full Text PDF

We develop an improved treatment of the surface ocean in the GEOS-Chem global 3-D biogeochemical model for mercury (Hg). We replace the globally uniform subsurface ocean Hg concentrations used in the original model with basin-specific values based on measurements. Updated chemical mechanisms for Hg⁰/Hg(II) redox reactions in the surface ocean include both photochemical and biological processes, and we improved the parametrization of particle-associated Hg scavenging.

View Article and Find Full Text PDF