Wilms' tumour (WT) is a pediatric tumor of the kidney that arises via failure of the fetal developmental program. The absence of identifiable mutations in the majority of WTs suggests the frequent involvement of epigenetic aberrations in WT. We therefore conducted a genome-wide analysis of promoter hypermethylation in WTs and identified hypermethylation at chromosome 5q31 spanning 800 kilobases (kb) and more than 50 genes.
View Article and Find Full Text PDFWilms tumors (WTs) have a complex etiology, displaying genetic and epigenetic changes, including loss of imprinting (LOI) and tumor suppressor gene silencing. To identify new regions of epigenetic perturbation in WTs, we screened kidney and tumor DNA using CpG island (CGI) tags associated with cancer-specific DNA methylation changes. One such tag corresponded to a paralog of the glioma pathogenesis-related 1/related to testis-specific, vespid, and pathogenesis proteins 1 (GLIPR1/RTVP-1) gene, previously reported to be a tumor-suppressor gene silenced by hypermethylation in prostate cancer.
View Article and Find Full Text PDFMany mammalian genes contain overlapping antisense RNAs, but the functions and mechanisms of action of these transcripts are mostly unknown. WT1 is a well-characterized developmental gene that is mutated in Wilms' tumor (WT) and acute myeloid leukaemia (AML) and has an antisense transcript (WT1-AS), which we have previously found to regulate WT1 protein levels. In this study, we show that WT1-AS is present in multiple spliceoforms that are usually expressed in parallel with WT1 RNA in human and mouse tissues.
View Article and Find Full Text PDFThe Wilms' tumor suppressor gene (WT1) encodes a zinc finger transcription factor that is vital during development of several organs including metanephric kidneys. Despite the critical regulatory role of WT1, the pathways and mechanisms by which WT1 orchestrates development remain elusive. To identify WT1 target genes, we performed a genome-wide expression profiling analysis in cells expressing inducible WT1.
View Article and Find Full Text PDFWe have shown previously that AWT1 and WT1-AS are functionally imprinted in human kidney. In the adult kidney, expression of both transcripts is restricted to the paternal allele, with the silent maternal allele retaining methylation at the WT1 antisense regulatory region (WT1 ARR). Here, we report characterization of the WT1 ARR differentially methylated region and show that it contains a transcriptional silencer element acting on both the AWT1 and WT1-AS promoters.
View Article and Find Full Text PDFThe Wilms' tumour suppressor gene, WT1, is mutated in 10-15% of Wilms' tumours and encodes zinc-finger proteins with diverse cellular functions critical for nephrogenesis, genitourinary development, haematopoiesis and sex determination. Here we report that a novel alternative WT1 transcript, AWT1, is co-expressed with WT1 in renal and haematopoietic cells. AWT1 maintains WT1 exonic structure between exons 2 and 10, but deploys a new 5'-exon located in intron 1 of WT1.
View Article and Find Full Text PDF