Publications by authors named "Anne Kong"

Dynamin-related protein 1 (Drp1) is a mitochondrial fission protein and a viable target for cardioprotection against myocardial ischaemia-reperfusion injury. Here, we reported a novel Drp1 inhibitor (DRP1i1), delivered using a cardiac-targeted nanoparticle drug delivery system, as a more effective approach for achieving acute cardioprotection. DRP1i1 was encapsulated in cubosome nanoparticles with conjugated cardiac-homing peptides (NanoDRP1i1) and the encapsulation efficiency was 99.

View Article and Find Full Text PDF
Article Synopsis
  • Successful engineering of vascularized tissues requires incorporating blood capillaries and connecting them to host vessels, which involves arranging endothelial cells to create functional networks.
  • The study compares induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) and primary endothelial cells, finding they perform similarly in forming a capillary-like structure in lab tests.
  • Results indicate that activating certain genes can enhance the tubulogenic activity of iPSC-ECs, supporting their potential use in developing vascularized tissues for therapies.
View Article and Find Full Text PDF

Cardiac organoids differentiated from induced pluripotent stem cells are emerging as a promising platform for pre-clinical drug screening, assessing cardiotoxicity, and disease modelling. However, it is challenging to simultaneously measure mechanical contractile forces and electrophysiological signals of cardiac organoids in real-time and in-situ with the existing methods. Here, we present a biting-inspired sensory system based on a resistive skin sensor and a microelectrode array.

View Article and Find Full Text PDF

Background & Aims: Liver sinusoidal endothelial cells (LSECs) are important in liver development, regeneration, and pathophysiology, but the differentiation process underlying their tissue-specific phenotype is poorly understood and difficult to study because primary human cells are scarce. The aim of this study was to use human induced pluripotent stem cell (hiPSC)-derived LSEC-like cells to investigate the differentiation process of LSECs.

Methods: hiPSC-derived endothelial cells (iECs) were transplanted into the livers of // mice and assessed over a 12-week period.

View Article and Find Full Text PDF

Due to a relative paucity of studies on human lymphatic assembly in vitro and subsequent in vivo transplantation, capillary formation and survival of primary human lymphatic (hLEC) and blood endothelial cells (hBEC) ± primary human vascular smooth muscle cells (hvSMC) were evaluated and compared in vitro and in vivo. hLEC ± hvSMC or hBEC ± hvSMC were seeded in a 3D porous scaffold in vitro, and capillary percent vascular volume (PVV) and vascular density (VD)/mm assessed. Scaffolds were also transplanted into a sub-cutaneous rat wound with morphology/morphometry assessment.

View Article and Find Full Text PDF
Article Synopsis
  • Time-lapse mechanical properties of stem cell-derived cardiac organoids provide crucial insights into heart function and related diseases, but studying these properties in real-time is challenging due to the complexity of the organoids and the limitations of current force sensors.
  • The study presents a novel soft resistive force-sensing diaphragm made from a highly sensitive platinum film, designed to easily integrate with soft culture wells without disrupting the organoids.
  • This advanced diaphragm allows for immediate and accurate measurement of the organoids' contractile forces and beating patterns under various conditions, such as electrical stimulation and drug dosing, enhancing our ability to model heart conditions.
View Article and Find Full Text PDF

Cardiomyocytes derived from pluripotent stem cells are immature. Maturation of cardiomyocytes is a multifactorial dynamic process that involves various factors that cannot be fully recapitulated . Here, we report a novel tissue engineering chamber with an integrated electrical stimulator and electrodes that will allow wireless electrical stimulation of cardiac tissue .

View Article and Find Full Text PDF

Aims: To establish pre-clinical proof of concept that sustained subcutaneous delivery of the secretome of human cardiac stem cells (CSCs) can be achieved in vivo to produce significant cardioreparative outcomes in the setting of myocardial infarction.

Methods And Results: Rats were subjected to permanent ligation of left anterior descending coronary artery and randomized to receive subcutaneous implantation of TheraCyte devices containing either culture media as control or 1 × 106 human W8B2+ CSCs, immediately following myocardial ischaemia. At 4 weeks following myocardial infarction, rats treated with W8B2+ CSCs encapsulated within the TheraCyte device showed preserved left ventricular ejection fraction.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (iPSCs) can be differentiated into cardiomyocytes for disease modelling and personalized medicine. Mitochondrial morphology and metabolism change dramatically as iPSCs differentiate into mesodermal cardiac lineages. Inhibiting mitochondrial fission has been shown to promote cardiac differentiation of iPSCs.

View Article and Find Full Text PDF

Tissue flaps are used to cover large/poorly healing wounds, but involve complex surgery and donor site morbidity. In this study a tissue flap is assembled using the mammalian body as a bioreactor to functionally connect an artery and vein to a human capillary network assembled from induced pluripotent stem cell-derived endothelial cells (hiPSC ECs). In vitro: Porous NovoSorb™ scaffolds (3 mm × 1.

View Article and Find Full Text PDF

Enhancing differentiation of mesenchymal stem cells (MSCs) to endothelial cells may improve their ability to vascularize tissue and promote wound healing. This study describes a novel role for nitric oxide (NO) in reprogramming MSCs towards an endothelial lineage and highlights the role of Wnt signaling and epigenetic modification by NO. Rat MSCs were transduced with lentiviral vectors expressing endothelial nitric oxide synthase (pLV-eNOS) and a mutated caveolin gene (pLV-CAV-1 ) to enhance NO generation resulting in increased in vitro capillary tubule formation and endothelial marker gene expression.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (iPSCs) are a valuable tool for studying the cardiac developmental process in vitro, and cardiomyocytes derived from iPSCs are a putative cell source for personalized medicine. Changes in mitochondrial morphology have been shown to occur during cellular reprogramming and pluripotent stem cell differentiation. However, the relationships between mitochondrial dynamics and cardiac mesoderm commitment of iPSCs remain unclear.

View Article and Find Full Text PDF

Here, we describe a porous 3-dimensional collagen scaffold material that supports capillary formation in vitro, and promotes vascularization when implanted in vivo. Collagen scaffolds were synthesized from type I bovine collagen and have a uniform pore size of 80 μm. In vitro, scaffolds seeded with primary human microvascular endothelial cells suspended in human fibrin gel formed CD31 positive capillary-like structures with clear lumens.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease characterized by the production of autoantibodies against nuclear components. Lyn-deficient mice are an excellent animal model of SLE manifesting clinical, pathological and biochemical features seen in the human disease. They develop autoreactive antibodies, glomerulonephritis and show generalized inflammation, and their B cells have a hyperactive phenotype.

View Article and Find Full Text PDF

Phosphoinositide 3-kinase (PI3K) signaling promotes the translocation of the glucose transporter, GLUT4, to the plasma membrane in insulin-sensitive tissues to facilitate glucose uptake. In adipocytes, insulin-stimulated reorganization of the actin cytoskeleton has been proposed to play a role in promoting GLUT4 translocation and glucose uptake, in a PI3K-dependent manner. However, the PI3K effectors that promote GLUT4 translocation via regulation of the actin cytoskeleton in adipocytes remain to be fully elucidated.

View Article and Find Full Text PDF

Phosphatidylinositol 3,4,5 trisphosphate [PtdIns(3,4,5)P3] is a potent membrane-bound signaling molecule transiently synthesized by phosphoinositide 3-kinase (PI3-kinase) in response to extracellular agonists. PtdIns(3,4,5)P3 signals need to be strictly controlled. PtdIns(3,4,5)P3 recruits and binds effectors that function in oncogenic signaling pathways.

View Article and Find Full Text PDF

Macrophages phagocytose particles to resolve infections and remove apoptotic cells. Phosphoinositide 3-kinase generates phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] is restricted to the phagocytic cup, promoting phagocytosis. The PtdIns(3,4,5)P(3) 5-phosphatase (5-ptase) Src homology 2 (SH2) domain-containing inositol-5-phosphatase 1 (SHIP1) inhibits phagocytosis.

View Article and Find Full Text PDF

Exogenous delivery of carrier-linked phosphatidylinositol 3-phosphate [PtdIns(3)P] to adipocytes promotes the trafficking, but not the insertion, of the glucose transporter GLUT4 into the plasma membrane. However, it is yet to be demonstrated if endogenous PtdIns(3)P regulates GLUT4 trafficking and, in addition, the metabolic pathways mediating plasma membrane PtdIns(3)P synthesis are uncharacterized. In unstimulated 3T3-L1 adipocytes, conditions under which PtdIns(3,4,5)P3 was not synthesized, ectopic expression of wild-type, but not catalytically inactive 72-kDa inositol polyphosphate 5-phosphatase (72-5ptase), generated PtdIns(3)P at the plasma membrane.

View Article and Find Full Text PDF

Phosphoinositides are membrane-bound signaling molecules that recruit, activate and localize target effectors to intracellular membranes regulating apoptosis, cell proliferation, insulin signaling and membrane trafficking. The SH2 domain containing inositol polyphosphate 5-phosphatase-2 (SHIP2) hydrolyzes phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) generating phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2). Overexpression of SHIP2 inhibits insulin-stimulated phosphoinositide 3-kinase (PI3K) dependent signaling events.

View Article and Find Full Text PDF

The platelet receptor for the von Willebrand factor (VWF) glycoprotein Ib-IX-V (GPIb-IX-V) complex mediates platelet adhesion at sites of vascular injury. The cytoplasmic tail of the GPIbalpha subunit interacts with the actin-binding protein, filamin, anchoring the receptor in the cytoskeleton. In motile cells, the second messenger phosphatidylinositol 3,4,5 trisphosphate (PtdIns(3,4,5)P3) induces submembraneous actin remodeling.

View Article and Find Full Text PDF

Recent studies have identified the inositol polyphosphate 5-phosphatases as a large family of signal modifying enzymes comprising 10 mammalian and 4 yeast family members. A number of investigations including gene-targeted deletion of 5-phosphatases in mice have demonstrated that these enzymes regulate many important cellular events including hematopoietic cell proliferation and activation, insulin signaling, endocytosis, and actin polymerization.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionpocp6ftfglilmslhmg25tahs6urd23e8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once