Publications by authors named "Anne Katrine Kvissel"

Background: Mycoplasma pneumoniae causes epidemics of upper respiratory disease and pneumonia. It is thought that M. pneumoniae usually causes milder upper respiratory disease in preschool children, with a greater chance of pneumonia in school-age children.

View Article and Find Full Text PDF

Serine/arginine-rich splicing factor 1 (SRSF1), previously designated SF2/ASF, belongs to a family of SR proteins that regulate constitutive and alternative splicing. SRSF1 expression is increased in tumors from several tissues and elicits changes in key target genes involved in tumor genesis. Several protein kinases phosphorylate SRSF1, which regulates its localization and function.

View Article and Find Full Text PDF

Accumulation of the complex set of alternatively processed mRNA from the adenovirus major late transcription unit (MLTU) is subjected to a temporal regulation involving both changes in poly (A) site choice and alternative 3' splice site usage. We have previously shown that the adenovirus L4-33K protein functions as an alternative splicing factor involved in activating the shift from L1-52,55K to L1-IIIa mRNA. Here we show that L4-33K specifically associates with the catalytic subunit of the DNA-dependent protein kinase (DNA-PK) in uninfected and adenovirus-infected nuclear extracts.

View Article and Find Full Text PDF

Background: Post-transcriptional processing of pre-mRNA takes place in several steps and requires involvement of a number of RNA-binding proteins. How pre-mRNA processing is regulated is in large enigmatic. The catalytic (C) subunit of protein kinase A (PKA) is a serine/threonine kinase, which regulates numerous cellular processes including pre-mRNA splicing.

View Article and Find Full Text PDF

Background: Protein kinase A type I (PKAI) and PKAII are expressed in most of the eukaryotic cells examined. PKA is a major receptor for cAMP and specificity is achieved partly through tissue-dependent expression and subcellular localization of subunits with different biochemical properties. In addition posttranslational modifications help fine tune PKA activity, distribution and interaction in the cell.

View Article and Find Full Text PDF

Protein kinase A (PKA) is targeted to distinct subcellular localizations by specific protein kinase A anchoring proteins (AKAPs). AKAPs are divided into subclasses based on their ability to bind type I or type II PKA or both. Dual-specificity AKAPs were recently reported to have an additional PKA binding determinant called the RI specifier region.

View Article and Find Full Text PDF

Background: Epidermal Growth Factor Receptor (EGFR) is a key target molecule in current treatment of several neoplastic diseases. Hence, in order to develop and improve current drugs targeting EGFR signalling, an accurate understanding of how this signalling pathway is regulated is required. It has recently been demonstrated that inhibition of cAMP-dependent protein kinase (PKA) induces a ligand-independent internalization of EGFR.

View Article and Find Full Text PDF

It is well documented that the beta-gene of the catalytic (C) subunit of protein kinase A encodes a number of splice variants. These splice variants are equipped with a variable N-terminal end encoded by alternative use of several exons located 5' to exon 2 in the human, bovine and mouse Cbeta gene. In the present study, we demonstrate the expression of six novel human Cbeta mRNAs that lack 99 bp due to loss of exon 4.

View Article and Find Full Text PDF

Protein kinase A (PKA) is a holoenzyme consisting of two catalytic (C) subunits bound to a regulatory (R) subunit dimer. Stimulation by cAMP dissociates the holoenzyme and causes translocation to the nucleus of a fraction of the C subunit. Apart from transcription regulation, little is known about the function of the C subunit in the nucleus.

View Article and Find Full Text PDF

Complement activation can cause tissue damage in cerebral stroke by the release of biologically potent activation products and impaired function of regulatory proteins. We investigated the constitutive and hypoxia-reoxygenation-dependent expression of complement receptor 1 (CD35), membrane cofactor protein (CD46), decay-accelerating factor (CD55), protectin (CD59), and complement C3a and C5a receptors (C3aR and C5aR) on human NT2-N neurons. The effect of hypoxia-reoxygenation on C3d-deposition on neurons and endothelial cells was also investigated.

View Article and Find Full Text PDF

Neuroendocrine (NE) cells may play a role in prostate cancer progression. Both androgen deprivation and cAMP are well known inducers of NE differentiation (NED) in the prostate. Gene-expression profiling of LNCaP cells, incubated in androgen stripped medium, showed that the Cbeta isoform of PKA is up-regulated during NE differentiation.

View Article and Find Full Text PDF

Inflammation probably plays a significant role in perinatal brain injury. To study the contribution of locally produced cytokines, the effect on cell death of addition of IL-8 and MCP-1 or antibodies to these, and the impact of acidosis, human postmitotic NT2-N neurons were exposed to 3 h of hypoxia and glucose deprivation and reoxygenated for 21 h. After 3 h of hypoxia with neutral medium, IL-8 was significantly increased compared to controls (150 (100-250)% vs.

View Article and Find Full Text PDF

In several cases of immunodeficiency and autoimmunity, the dysfunctional immune system is associated with either hypo- or hyperactive T and B cells. In autoimmune conditions such as systemic lupus erythematosus (SLE) and immunodeficiencies such as acquired immunodeficiency syndrome (AIDS), it has been demonstrated that the regulatory effect of the signaling pathway of cyclic 3', 5' adenosine monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) is abrogated. PKA is well-known as a key regulator of immune responses in that it inhibits both early and late phases of antigen induced T and B cell activation.

View Article and Find Full Text PDF

Cyclic AMP (cAMP) and cAMP-dependent protein kinase (PKA) are critical regulators of neuronal differentiation. The expression, levels and activities of PKA subunits were studied prior to and during differentiation of the human neuronal precursor cell line NTera 2 (NT2). Undifferentiated NT2 cells expressed mainly cytoplasmic PKA type I, consisting of the regulatory subunit RIalpha and the catalytic subunit Calpha.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6b6j64uoduo7cdr23nj2cgo4iike48ls): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once