Publications by authors named "Anne Kalker"

With over 14 million people living above 3,500 m, the study of acclimatization and adaptation to high altitude in human populations is of increasing importance, where exposure to high altitude (HA) imposes a blood oxygenation and acid-base challenge. A sustained and augmented hypoxic ventilatory response protects oxygenation through ventilatory acclimatization, but elicits hypocapnia and respiratory alkalosis. A subsequent renally mediated compensatory metabolic acidosis corrects pH toward baseline values, with a high degree of interindividual variability.

View Article and Find Full Text PDF

Objectives: The Sherpa ethnic group living at altitude in Nepal may have experienced natural selection in response to chronic hypoxia. We have previously shown that Sherpa in Kathmandu (1400 m) possess larger spleens and a greater apnea-induced splenic contraction compared to lowland Nepalis. This may be significant for exercise capacity at altitude as the human spleen responds to stress-induced catecholamine secretion by an immediate contraction, which results in transiently elevated hemoglobin concentration ([Hb]).

View Article and Find Full Text PDF

The human spleen contracts in response to stress-induced catecholamine secretion, resulting in a temporary rise in haemoglobin concentration ([Hb]). Recent findings highlighted enhanced splenic response to exercise at high altitude in Sherpa, possibly due to a blunted splenic response to hypoxia. To explore the potential blunted splenic contraction in Sherpas at high altitude, we examined changes in spleen volume during hyperoxic breathing, comparing acclimatized Sherpa with acclimatized individuals of lowland ancestry.

View Article and Find Full Text PDF

Central sleep apnea (CSA) is characterized by periodic breathing (PB) during sleep, defined as intermittent periods of apnea/hypopnea and hyperventilation, with associated acute fluctuations in oxyhemoglobin saturation (SO). CSA has an incidence of ∼50% in heart failure patients but is universal at high altitude (HA; ≥2,500 m), increasing in severity with further ascent and/or time at altitude. However, whether PB is adaptive, maladaptive, or neutral with respect to sleeping SO at altitude is unclear.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? We assessed the utility of a new metric for quantifying ventilatory acclimatization to high altitude, derived from differential ascent and descent steady-state cardiorespiratory variables (i.e. hysteresis).

View Article and Find Full Text PDF