Rapid non-genomic effects of 17beta-estradiol, the principal circulating estrogen, have been observed in a wide variety of cell types. Here we investigate rapid signaling effects of 17beta-estradiol in rat hepatocytes. We show that, above a threshold concentration of 1 nm, 17beta-estradiol, but not 17alpha-estradiol, stimulates particulate guanylyl cyclase to elevate cGMP, which through activation and plasma membrane recruitment of protein kinase G isoform Ialpha, stimulates plasma membrane Ca(2+)-ATPase-mediated Ca(2+) efflux from rat hepatocytes.
View Article and Find Full Text PDFBackground: The topology of signaling cascades has been studied in quite some detail. However, how information is processed exactly is still relatively unknown. Since quite diverse information has to be transported by one and the same signaling cascade (e.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2008
In rat hepatocytes, atrial natriuretic peptide (ANP) elevates cGMP through activation of particulate guanylyl cyclase and attenuates Ca(2+) signals by stimulating net plasma membrane Ca(2+) efflux. We show here that ANP-stimulated hepatocyte Ca(2+) efflux is mediated by protein kinase G (PKG) isotype I. Furthermore, we show that ANP recruits endogenous PKGIalpha, but not PKGIbeta, to the plasma membrane.
View Article and Find Full Text PDFIn many non-excitable eukaryotic cells, including hepatocytes, Ca(2+) oscillations play a key role in intra- and intercellular signalling, thus regulating many cellular processes from fertilisation to death. Therefore, understanding the mechanisms underlying these oscillations, and consequently understanding how they may be regulated, is of great interest. In this paper, we study the influence of reduced Ca(2+) plasma membrane efflux on Ca(2+) oscillations in hepatocytes.
View Article and Find Full Text PDFCalcium has been established as a key messenger in both intra- and intercellular signaling. Experimentally observed intracellular calcium responses to different agonists show a variety of behaviors from simple spiking to complex oscillatory regimes. Here we study typical experimental traces of calcium oscillations in hepatocytes obtained in response to phenylephrine and ATP.
View Article and Find Full Text PDFElevations in intracellular Ca(2+) concentration and calpain activity are common early events in cellular injury, including that of hepatocytes. Atrial natriuretic peptide is a circulating hormone that has been shown to be hepatoprotective. The aim of this study was to examine the effects of atrial natriuretic peptide on potentially harmful elevations in cytosolic free Ca(2+) and calpain activity induced by extracellular ATP in rat hepatocytes.
View Article and Find Full Text PDFSimulation and modeling is becoming more and more important when studying complex biochemical systems. Most often, ordinary differential equations are employed for this purpose. However, these are only applicable when the numbers of participating molecules in the biochemical systems are large enough to be treated as concentrations.
View Article and Find Full Text PDFBiliary disease is a major cause of acute pancreatitis. In this study we investigated the electrophysiological effects of bile acids on pancreatic acinar cells. In perforated patch clamp experiments we found that taurolithocholic acid 3-sulfate depolarized pancreatic acinar cells.
View Article and Find Full Text PDFBackground & Aims: Oscillations in cytosolic free Ca2+ concentration are a fundamental mechanism of intracellular signaling in hepatocytes. The aim of this study was to examine the effects of atrial natriuretic peptide (ANP) on cytosolic Ca2+ oscillations in rat hepatocytes.
Methods: Cyclic guanosine monophosphate (cGMP) was measured by enzyme immunoassay.