Adrenergic stimulation of adipocytes yields a cAMP signal that activates protein kinase A (PKA). PKA phosphorylates perilipin, a protein localized on the surface of lipid droplets that serves as a gatekeeper to regulate access of lipases converting stored triglycerides to free fatty acids and glycerol in a phosphorylation-dependent manner. Here, we report a new function for optic atrophy 1 (OPA1), a protein known to regulate mitochondrial dynamics, as a dual-specificity A-kinase anchoring protein associated with lipid droplets.
View Article and Find Full Text PDFWe recently reported that the dual-specificity AKAP (A-kinaseanchoring protein) Ezrin targets type I PKA (protein kinase A) to the vicinity of the TCR (T-cell receptor) in T-cells and, together with PAG (phosphoprotein associated with glycosphingolipid-enriched membrane microdomains) and EBP50 [ERM (Ezrin/Radixin/Moesin)-binding phosphoprotein 50], forms a scaffold that positions PKA close to its substrate, Csk (C-terminal Src kinase). This complex is important for controlling the activation state of T-cells. Ezrin binds the adaptor protein EBP50, which again contacts PAG.
View Article and Find Full Text PDFProtein kinase A (PKA) is targeted to distinct subcellular localizations by specific protein kinase A anchoring proteins (AKAPs). AKAPs are divided into subclasses based on their ability to bind type I or type II PKA or both. Dual-specificity AKAPs were recently reported to have an additional PKA binding determinant called the RI specifier region.
View Article and Find Full Text PDFA-kinase-anchoring protein 149 (AKAP149) is a membrane protein of the mitochondrial and endoplasmic reticulum/nuclear envelope network. AKAP149 controls the subcellular localization and temporal order of protein phosphorylation by tethering protein kinases and phosphatases to these compartments. AKAP149 also includes an RNA-binding K homology (KH) domain, the loss of function of which has been associated in other proteins with neurodegenerative syndromes.
View Article and Find Full Text PDFA-kinase anchoring proteins (AKAPs) target protein kinase A (PKA) to a variety of subcellular locations. Conventional AKAPs contain a 14-18-amino acid sequence that forms an amphipathic helix that binds with high affinity to the regulatory (R) subunit of PKA type II. More recently, a group of dual specificity AKAPs has been classified on the basis of their ability to bind the PKA type I and the PKA type II isozymes.
View Article and Find Full Text PDFPhenylalanine hydroxylase (PAH) is generally considered to undergo a large and reversible conformational transition upon l-Phe binding, which is closely linked to the substrate-induced catalytic activation of this hysteretic enzyme. Recently, several crystallographically solvent-exposed hinge-bending regions including residues 31-34, 111-117, 218-226, and 425-429 have been defined/predicted to be involved in the intra-protomer propagation of the substrate-triggered molecular motions generated at the active site. On this basis, single-site mutagenesis of key residues in these regions of the human PAH tetramer was performed in the present study, and their functional impact was measured by steady-state kinetics and the global conformational transition as assessed by surface plasmon resonance and intrinsic tryptophan fluorescence spectroscopy.
View Article and Find Full Text PDF