The development of porous scaffolds for tissue engineering applications requires the careful choice of properties, as these influence cell adhesion, proliferation and differentiation. Sterilization of scaffolds is a prerequisite for in vitro culture as well as for subsequent in vivo implantation. The variety of methods used to provide sterility is as diverse as the possible effects they can have on the structural and material properties of the three-dimensional (3-D) porous structure, especially in polymeric or proteinous scaffold materials.
View Article and Find Full Text PDFElectrospinning allows for the preparation of unique matrices with nano- to micrometer sized fibers using diverse materials and numerous fabrication techniques. A variety of post-spinning modification techniques add to the large repertoire and enable development of tailored drug delivery systems. Herein we provide an overview on current developments regarding different techniques to manufacture electrospun matrices and achieve efficient drug loading and release.
View Article and Find Full Text PDFThe design of new bioactive scaffolds mimicking the physiologic environment present during tissue formation is an important frontier in biomaterials research. Herein, we evaluated scaffolds prepared from blends of two biopolymers: silk fibroin and hyaluronan. Our rationale was that such blends would allow the combination of silk fibroin's superior mechanical properties with the biological characteristics of hyaluronan.
View Article and Find Full Text PDFAs a contribution to the functionality of scaffolds in tissue engineering, here we report on advanced scaffold design through introduction and evaluation of topographical, mechanical and chemical cues. For scaffolding, we used silk fibroin (SF), a well-established biomaterial. Biomimetic alignment of fibers was achieved as a function of the rotational speed of the cylindrical target during electrospinning of a SF solution blended with polyethylene oxide.
View Article and Find Full Text PDFThe development of prototype scaffolds for either direct implantation or tissue engineering purposes and featuring spatiotemporal control of growth factor release is highly desirable. Silk fibroin (SF) scaffolds with interconnective pores, carrying embedded microparticles that were loaded with insulin-like growth factor I (IGF-I), were prepared by a porogen leaching protocol. Treatments with methanol or water vapor induced water insolubility of SF based on an increase in beta-sheet content as analyzed by FTIR.
View Article and Find Full Text PDF