Background: Microalgal triacylglycerides (TAGs) are a promising sustainable feedstock for the biofuel, chemical and food industry. However, industrial production of microalgal products for commodity markets is not yet economically viable, largely because of low microalgal productivity. The latter is strictly dependent on initial-biomass-specific (IBS) light availability (i.
View Article and Find Full Text PDFA kinetic model is presented that describes functional biomass, starch and storage lipid (TAG) synthesis in the microalga Neochloris oleoabundans as a function of nitrogen and light supply rates to a nitrogen-limited turbidostat cultivation system. The model is based on the measured electron distribution in N. oleoabundans, which showed that starch is the primary storage component, whereas TAG was only produced after an excess of electrons was generated, when growth was limited by nitrogen supply.
View Article and Find Full Text PDFIn this paper the hypothesis was tested whether TAG accumulation serves as an energy sink when microalgae are exposed to an energy imbalance caused by nutrient limitation. In our continuous culture system, excess light absorption and growth-limiting nitrogen supply rates were combined, which resulted in accumulation of TAG (from 1.5% to 12.
View Article and Find Full Text PDFIn this study, a metabolic network describing the primary metabolism of Chlamydomonas reinhardtii was constructed. By performing chemostat experiments at different growth rates, energy parameters for maintenance and biomass formation were determined. The chemostats were run at low irradiances resulting in a high biomass yield on light of 1.
View Article and Find Full Text PDF