Recent studies have shown that RIC-3, originally identified in Caenorhabditis elegans as the protein encoded by the gene resistance to inhibitors of cholinesterase (ric-3), can enhance functional expression of alpha7 nicotinic acetylcholine receptors (nAChRs). In the present study, the influence of C. elegans and human RIC-3 upon multiple homomeric (alpha7, alpha8, and alpha9) and heteromeric (alpha3beta2, alpha3beta4, alpha4beta2, alpha4beta4, and alpha9alpha10) nAChR subtypes has been examined in transfected mammalian cells by radioligand binding and functional characterization.
View Article and Find Full Text PDFTwo subunits of the 5-hydroxytryptamine type 3 (5-HT3) have been identified (5-HT3A and 5-HT3B) that assemble into homomeric (5-HT3A) and heteromeric (5-HT3A+5-HT3B) complexes. Unassembled 5-HT3B subunits are efficiently retained within the cell. In this study, we address the mechanism controlling the release of 5-HT3B from the endoplasmic reticulum (ER).
View Article and Find Full Text PDFAxonal loss, already present in the acute and first relapse phases of experimental allergic encephalomyelitis (EAE) in the ABH mouse, only becomes apparent in the third relapse in the interleukin-12 model of relapsing EAE in the Lewis rat. Caspase-1 immunostaining in the spinal cord of Lewis rats was mainly localized to inflammatory cuffs with the greatest proportion of active caspase-1-positive cells detected during the first and second relapses, correlating with enzyme activity and protein on Western blots. However, in the spinal cord of ABH mice during acute EAE, caspase-1 immunostaining was localized both on inflammatory and neuronal cells, again correlating with enzyme activity and protein production.
View Article and Find Full Text PDF