Publications by authors named "Anne Haugaard"

We have previously identified 2-amino-1,4,5,6-tetrahydropyrimidine-5-carboxylic acid (ATPCA) as the most potent substrate-inhibitor of the betaine/GABA transporter 1 (BGT1) (IC 2.5 µM) reported to date. Herein, we characterize the binding mode of 20 novel analogs and propose the molecular determinants driving BGT1-selectivity.

View Article and Find Full Text PDF

The αβδ-containing GABA receptors are involved in a number of brain diseases. Despite the potential of a δ-selective imaging agent, no PET radioligand is currently available for in vivo imaging. Here, we report the characterization of DS2OMe () as a candidate radiotracer, C-labeling, and subsequent evaluation of [C]DS2OMe in a domestic pig as a PET radioligand for visualization of the δ-containing GABA receptors.

View Article and Find Full Text PDF

δ-Selective compounds 1 and 2 (DS1, compound 22; DS2, compound 16) were introduced as functionally selective modulators of δ-containing GABA type A receptors (GABAR). In our hands, [H]EBOB-binding experiments with recombinant GABAR and compound 22 showed no proof of δ-selectivity, although there was a minimally higher preference for the α4β3δ and α6β2/3δ receptors with respect to potency. In order to delineate the structural determinants of δ preferences, we synthesized 25 derivatives of DS1 and DS2, and investigated their structure-activity relationships (SAR).

View Article and Find Full Text PDF

The betaine/γ-aminobutyric acid (GABA) transporter 1 (BGT1) is one of the four GABA transporters (GATs) involved in the termination of GABAergic neurotransmission. Although suggested to be implicated in seizure management, the exact functional importance of BGT1 in the brain is still elusive. This is partly owing to the lack of potent and selective pharmacological tool compounds that can be used to probe its function.

View Article and Find Full Text PDF

γ-Hydroxybutyric acid (GHB) is a neuroactive substance with specific high-affinity binding sites. To facilitate target identification and ligand optimization, we herein report a comprehensive structure-affinity relationship study for novel ligands targeting these binding sites. A molecular hybridization strategy was used based on the conformationally restricted 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) and the linear GHB analog trans-4-hydroxycrotonic acid (T-HCA).

View Article and Find Full Text PDF

γ-Aminobutyric acid (GABA) neurotransmission is terminated by the GABA transporters (GATs) via uptake of GABA into neurons and surrounding glial cells. Four different transporters have been identified: GAT1, GAT2, GAT3, and the betaine/GABA transporter 1 (BGT1). The GAT1 subtype is the most explored transporter due to its high abundance in the brain and the existence of selective and potent GAT1 inhibitors.

View Article and Find Full Text PDF

Imbalances in GABA-mediated tonic inhibition are involved in several pathophysiological conditions. A classical way of controlling tonic inhibition is through pharmacological intervention with extrasynaptic GABA receptors that sense ambient GABA and mediate a persistent GABAergic conductance. An increase in tonic inhibition may, however, also be obtained indirectly by inhibiting glial GABA transporters (GATs).

View Article and Find Full Text PDF