Publications by authors named "Anne Hakem"

PARP inhibitors (PARPi) are efficacious in -null tumors; however, their utility is limited in tumors with functional BRCA1. We hypothesized that pharmacologically reducing BRCA1 protein levels could enhance PARPi effectiveness in wild-type tumors. To identify BRCA1 downregulating agents, we generated reporter cell lines using CRISPR-mediated editing to tag endogenous BRCA1 protein with HiBiT.

View Article and Find Full Text PDF

Current models suggest that DNA double-strand breaks (DSBs) can move to the nuclear periphery for repair. It is unclear to what extent human DSBs display such repositioning. Here we show that the human nuclear envelope localizes to DSBs in a manner depending on DNA damage response (DDR) kinases and cytoplasmic microtubules acetylated by α-tubulin acetyltransferase-1 (ATAT1).

View Article and Find Full Text PDF

Unlabelled: Caspases are cysteine-aspartic proteases that were initially discovered to play a role in apoptosis. However, caspase 8, in particular, also has additional nonapoptotic roles, such as in inflammation. Adipocyte cell death and inflammation are hypothesized to be initiating pathogenic factors in type 2 diabetes.

View Article and Find Full Text PDF
Article Synopsis
  • Breast cancer with BRCA1/2 mutations often recurs and resists treatments like PARP inhibitors, leading to a search for new targeted therapies.
  • Researchers found that losing RNF8 can protect against breast tumors in Brca1-mutant mice, while in human cancer cells, RNF8 deficiency increases DNA damage and leads to cancer cell death through R-loop accumulation.
  • The study reveals that RNF8 interacts with XRN2 to resolve R-loops, and its absence disrupts this process, causing genomic instability and highlighting a synthetic lethal relationship between RNF8 and BRCA1.
View Article and Find Full Text PDF

BRCA1 mutations are associated with increased breast and ovarian cancer risk. BRCA1-mutant tumors are high-grade, recurrent, and often become resistant to standard therapies. Herein, we performed a targeted CRISPR-Cas9 screen and identified MEPCE, a methylphosphate capping enzyme, as a synthetic lethal interactor of BRCA1.

View Article and Find Full Text PDF

Germline mutations in BRCA1 and BRCA2 (BRCA1/2) genes considerably increase breast and ovarian cancer risk. Given that tumors with these mutations have elevated genomic instability, they exhibit relative vulnerability to certain chemotherapies and targeted treatments based on poly (ADP-ribose) polymerase (PARP) inhibition. However, the molecular mechanisms that influence cancer risk and therapeutic benefit or resistance remain only partially understood.

View Article and Find Full Text PDF

The E3 ubiquitin ligase RNF8 plays critical roles in maintaining genomic stability by promoting the repair of DNA double-strand breaks (DSBs) through ubiquitin signaling. Abnormal activation of Notch signaling and defective repair of DSBs promote breast cancer risk. Here, we found that low expression of the full-length RNF8 correlated with poor prognosis for breast cancer patients.

View Article and Find Full Text PDF

Topoisomerase IIα (TOP2α) is essential for chromosomal condensation and segregation, as well as genomic integrity. Here we report that RNF168, an E3 ligase mutated in the human RIDDLE syndrome, interacts with TOP2α and mediates its ubiquitylation. RNF168 deficiency impairs decatenation activity of TOP2α and promotes mitotic abnormalities and defective chromosomal segregation.

View Article and Find Full Text PDF

Defective signaling or repair of DNA double-strand breaks has been associated with developmental defects and human diseases. The E3 ligase RING finger 168 (RNF168), mutated in the human radiosensitivity, immunodeficiency, dysmorphic features, and learning difficulties syndrome, was shown to ubiquitylate H2A-type histones, and this ubiquitylation was proposed to facilitate the recruitment of p53-binding protein 1 (53BP1) to the sites of DNA double-strand breaks. In contrast to more upstream proteins signaling DNA double-strand breaks (e.

View Article and Find Full Text PDF

Ubiquitylation is currently recognized as a major posttranslational modification that regulates diverse cellular processes. Pirh2 is a ubiquitin E3 ligase that regulates the turnover and functionality of several proteins involved in cell proliferation and differentiation, cell cycle checkpoints, and cell death. Here we review the role of Pirh2 as a regulator of the DNA damage response through the ubiquitylation of p53, Chk2, p73, and PolH.

View Article and Find Full Text PDF

Rnf8 is an E3 ubiquitin ligase that plays a key role in the DNA damage response as well as in the maintenance of telomeres and chromatin remodeling. Rnf8(-/-) mice exhibit developmental defects and increased susceptibility to tumorigenesis. We observed that levels of p53, a central regulator of the cellular response to DNA damage, increased in Rnf8(-/-) mice in a tissue- and cell type-specific manner.

View Article and Find Full Text PDF

In addition to its proapoptotic function, caspase-8 is also important for several other processes, including suppressing necroptosis, cell migration, and immune cell survival. In the present study, we report that the loss of caspase-8 in B lymphocytes leads to B-cell malignancies and that the risk for these tumors is further enhanced in the absence of p53. We also report that deficiency of caspase-8 results in impaired cytokinesis and that casp8(-/-) lymphomas display remarkably elevated levels of chromosomal aberrations.

View Article and Find Full Text PDF

Ubiquitylation is fundamental for the regulation of the stability and function of p53 and c-Myc. The E3 ligase Pirh2 has been reported to polyubiquitylate p53 and to mediate its proteasomal degradation. Here, using Pirh2 deficient mice, we report that Pirh2 is important for the in vivo regulation of p53 stability in response to DNA damage.

View Article and Find Full Text PDF

Dysregulation of either the extrinsic or intrinsic apoptotic pathway can lead to various diseases including immune disorders and cancer. In addition to its role in the extrinsic apoptotic pathway, caspase-8 plays nonapoptotic functions and is essential for T cell homeostasis. The pro-apoptotic BH3-only Bcl-2 family member Bim is important for the intrinsic apoptotic pathway and its inactivation leads to autoimmunity that is further exacerbated by loss of function of the death receptor Fas.

View Article and Find Full Text PDF

Polymerase eta (PolH) is necessary for translesion DNA synthesis, and PolH deficiency predisposes xeroderma pigmentosum variant (XPV) patients to cancer. Due to the critical role of PolH in translesion DNA synthesis, the activity of PolH is tightly controlled and subjected to multiple regulations, especially posttranslational modifications. Here, we show that PolH-dependent lesion bypass and intracellular translocation are regulated by Pirh2 E3 ubiquitin ligase through monoubiquitination.

View Article and Find Full Text PDF

Chk2 is an effector kinase important for the activation of cell cycle checkpoints, p53, and apoptosis in response to DNA damage. Mus81 is required for the restart of stalled replication forks and for genomic integrity. Mus81(Δex3-4/Δex3-4) mice have increased cancer susceptibility that is exacerbated by p53 inactivation.

View Article and Find Full Text PDF

Eukaryotic cells have evolved to use complex pathways for DNA damage signaling and repair to maintain genomic integrity. RNF168 is a novel E3 ligase that functions downstream of ATM,γ-H2A.X, MDC1, and RNF8.

View Article and Find Full Text PDF

The importance of cancer metabolism has been appreciated for many years, but the intricacies of how metabolic pathways interconnect with oncogenic signaling are not fully understood. With a clear understanding of how metabolism contributes to tumorigenesis, we will be better able to integrate the targeting of these fundamental biochemical pathways into patient care. The mevalonate (MVA) pathway, paced by its rate-limiting enzyme, hydroxymethylglutaryl coenzyme A reductase (HMGCR), is required for the generation of several fundamental end-products including cholesterol and isoprenoids.

View Article and Find Full Text PDF

Signaling and repair of DNA double-strand breaks (DSBs) are critical for preventing immunodeficiency and cancer. These DNA breaks result from exogenous and endogenous DNA insults but are also programmed to occur during physiological processes such as meiosis and immunoglobulin heavy chain (IgH) class switch recombination (CSR). Recent studies reported that the E3 ligase RNF8 plays important roles in propagating DNA DSB signals and thereby facilitating the recruitment of various DNA damage response proteins, such as 53BP1 and BRCA1, to sites of damage.

View Article and Find Full Text PDF

Mus81 plays an integral role in the maintenance of genome stability and DNA repair in mammalian cells. Deficiency of Mus81 in human and mouse cells results in hypersensitivity to interstrand cross-linking (ICL) agents and elevated levels of genomic instability. Furthermore, Mus81-mutant mice are susceptible to spontaneous lymphomas.

View Article and Find Full Text PDF

In addition to its pro-apoptotic function in the death receptor pathway, roles for caspase-8 in mediating T-cell proliferation, maintaining lymphocyte homeostasis, and suppressing immunodeficiency have become evident. Humans with a germline point mutation of CASPASE-8 have multiple defects in T cells, B cells, and NK cells, most notably attenuated activation and immunodeficiency. By generating mice with B-cell-specific inactivation of caspase-8 (bcasp8(-/-)), we show that caspase-8 is dispensable for B-cell development, but its loss in B cells results in attenuated antibody production upon in vivo viral infection.

View Article and Find Full Text PDF

The Rho proteins are Ras-related guanosine triphosphatases (GTPases) that function in cytoskeletal reorganization, cell migration, and stress fiber and focal adhesion formation. Overexpression of RhoC enhances the ability of melanoma cells to exit the blood and colonize the lungs. However, in vivo confirmation of RhoC's role in metastasis has awaited a RhoC-deficient mouse model.

View Article and Find Full Text PDF

The Drosophila melanogaster warts/lats tumour suppressor has two mammalian counterparts LATS1/Warts-1 and LATS2/Kpm. Here, we show that mammalian Lats orthologues exhibit distinct expression profiles according to germ cell layer origin. Lats2(-/-) embryos show overgrowth in restricted tissues of mesodermal lineage; however, lethality ultimately ensues on or before embryonic day 12.

View Article and Find Full Text PDF

Disruption of Brca1 results in cellular demise or tumorigenesis depending on cellular context. Inactivation of p53 contributes to Brca1-associated tumor susceptibility. However the activation of p53-dependent checkpoint/apoptotic signaling in the absence of Brca1 is poorly understood.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmjsitpuonb6mlp3t8k2ti6j01s97ujm1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once