Publications by authors named "Anne Gschaedler Mathis"

The leaves of Haw. are the main agro-waste generated by the mezcal industry and are becoming an important source of bioactive compounds, such as phenolic compounds, that could be used in the food and pharmaceutical industries. Therefore, the extraction and identification of these phytochemicals would revalorize these leaf by-products.

View Article and Find Full Text PDF

Mezcal is a traditional Mexican distilled beverage, known for its marked organoleptic profile, which is influenced by several factors, such as the fermentation process, where a wide variety of microorganisms are present. Kluyveromyces marxianus is one of the main yeasts isolated from mezcal fermentations and has been associated with ester synthesis, contributing to the flavors and aromas of the beverage. In this study, we employed CRISPR interference (CRISPRi) technology, using dCas9 fused to the Mxi1 repressor factor domain, to down-regulate the expression of the IAH1 gene, encoding for an isoamyl acetate-hydrolyzing esterase, in K.

View Article and Find Full Text PDF

Fructans are the main sugar in agave pine used by yeasts during mezcal fermentation processes, from which Candida apicola NRRL Y-50540 and Torulaspora delbrueckii NRRL Y-50541 were isolated. De novo transcriptome analysis was carried out to identify genes involved in the hydrolysis and assimilation of Agave fructans (AF). We identified a transcript annotated as SUC2, which is related to β-fructofuranosidase activity, and several differential expressed genes involved in the transcriptional regulation of SUC2 such as: MIG1, MTH1, SNF1, SNF5, REG1, SSN6, SIP1, SIP2, SIP5, GPR1, RAS2, and PKA.

View Article and Find Full Text PDF

A stoichiometric model for Saccharomyces cerevisiae is reconstructed to analyze the continuous fermentation process of agave juice in Tequila production. The metabolic model contains 94 metabolites and 117 biochemical reactions. From the above set of reactions, 93 of them are linked to internal biochemical reactions and 24 are related to transport fluxes between the medium and the cell.

View Article and Find Full Text PDF

There is a recent and growing interest in the study and application of non-Saccharomyces yeasts, mainly in fermented foods. Numerous publications and patents show the importance of these yeasts. However, a fundamental issue in studying and applying them is to ensure an appropriate preservation scheme that allows to the non-Saccharomyces yeasts conserve their characteristics and fermentative capabilities by long periods of time.

View Article and Find Full Text PDF

Alcoholic fermentation is influenced by yeast strain, culture media, substrate concentration and fermentation conditions, which contribute to taste and aroma. Some non-Saccharomyces yeasts are recognized as volatile compound producers that enrich aromatic profile of alcoholic beverages. In this work, 21 strains of Pichia kluyveri isolated from different fermentative processes and regions were evaluated.

View Article and Find Full Text PDF

Specific ecological interactions between insects and microbes have potential in the development of targeted pest monitoring or control techniques for the spotted wing drosophilid, (Matsumura), an exotic invasive pest of soft fruit. To evaluate attraction to yeast species from preferred types of fruit, three yeasts were isolated from blackberry fruit and two yeasts from raspberry fruit and used to bait simple plastic bottle traps. and were identified from blackberries, whereas a different strain was identified from raspberry.

View Article and Find Full Text PDF

The application of near-infrared spectroscopy monitoring of xylose metabolizing yeast such as for ethanol production with semisynthetic media, applying chemometrics, was investigated. During the process in a bioreactor, biomass, glucose, xylose, ethanol, acetic acid, and glycerol determinations were performed by a transflection probe immersed in the culture broth and connected to a near-infrared process analyzer. Wavelength windows in near-infrared spectra recorded between 800 and 2200 nm were pretreated using Savitzky-Golay smoothing, second derivative and multiplicative scattering correction in order to perform a partial least squares regression and generate the calibration models.

View Article and Find Full Text PDF

The application feasibility of in-situ or in-line monitoring of S. cerevisiae ITV01 alcoholic fermentation process, employing Near-Infrared Spectroscopy (NIRS) and Chemometrics, was investigated. During the process in a bioreactor, in the complex analytical matrix, biomass, glucose, ethanol and glycerol determinations were performed by a transflection fiber optic probe immersed in the culture broth and connected to a Near-Infrared (NIR) process analyzer.

View Article and Find Full Text PDF

Torulaspora delbrueckii presents metabolic features interesting for biotechnological applications (in the dairy and wine industries). Recently, the T. delbrueckii CBS 1146 genome, which has been maintained under laboratory conditions since 1970, was published.

View Article and Find Full Text PDF

Candida apicola, a highly osmotolerant ascomycetes yeast, produces sophorolipids (biosurfactants), membrane fatty acids, and enzymes of biotechnological interest. The genome obtained has a high-quality draft for this species and can be used as a reference to perform further analyses, such as differential gene expression in yeast from Candida genera.

View Article and Find Full Text PDF

During the mezcal fermentation process, yeasts are affected by several stresses that can affect their fermentation capability. These stresses, such as thermal shock, ethanol, osmotic and growth inhibitors are common during fermentation. Cells have improved metabolic systems and they express stress response genes in order to decrease the damage caused during the stress, but to the best of our knowledge, there are no published works exploring the effect of oxidants and prooxidants, such as H2O2 and menadione, during growth.

View Article and Find Full Text PDF

The great variety of agaves and their multiple uses have played an important role in the cultural identification of Mexico. They have been exploited in many ways for over 10,000 years, and one of these applications is the production of alcoholic nondistilled and distilled beverages. Most of the production processes of these Mexican beverages involve a complex fermentation in which bacteria (mainly lactic and acetic acid) and yeasts (non-Saccharomyces and Saccharomyces) are present in stable mixed populations, or succeeding one another, and have a significant impact on the sensorial characteristics and nutritive value of the final product.

View Article and Find Full Text PDF