The eddy covariance technique, commonly applied using flux towers, enables the investigation of greenhouse gas (e.g., carbon dioxide, methane, nitrous oxide) and energy (latent and sensible heat) fluxes between the biosphere and the atmosphere.
View Article and Find Full Text PDFGlobe-LFMC 2.0, an updated version of Globe-LFMC, is a comprehensive dataset of over 280,000 Live Fuel Moisture Content (LFMC) measurements. These measurements were gathered through field campaigns conducted in 15 countries spanning 47 years.
View Article and Find Full Text PDFRemote Sens Ecol Conserv
October 2023
Climate change and increasing human activities are impacting ecosystems and their biodiversity. Quantitative measurements of essential biodiversity variables (EBV) and essential climate variables are used to monitor biodiversity and carbon dynamics and evaluate policy and management interventions. Ecosystem structure is at the core of EBVs and carbon stock estimation and can help to inform assessments of species and species diversity.
View Article and Find Full Text PDFLevels of fire activity and severity that are unprecedented in the instrumental record have recently been observed in forested regions around the world. Using a large sample of daily fire events and hourly climate data, here we show that fire activity in all global forest biomes responds strongly and predictably to exceedance of thresholds in atmospheric water demand, as measured by maximum daily vapour pressure deficit. The climatology of vapour pressure deficit can therefore be reliably used to predict forest fire risk under projected future climates.
View Article and Find Full Text PDFNon-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change threats emphasize the need for new tools to capture biomass change in non-forest ecosystems at appropriate scales.
View Article and Find Full Text PDFIn 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20 anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those 'next users' of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling.
View Article and Find Full Text PDFGross primary productivity (GPP) of wooded ecosystems (forests and savannas) is central to the global carbon cycle, comprising 67%-75% of total global terrestrial GPP. Climate change may alter this flux by increasing the frequency of temperatures beyond the thermal optimum of GPP (T ). We examined the relationship between GPP and air temperature (Ta) in 17 wooded ecosystems dominated by a single plant functional type (broadleaf evergreen trees) occurring over a broad climatic gradient encompassing five ecoregions across Australia ranging from tropical in the north to Mediterranean and temperate in the south.
View Article and Find Full Text PDFTopography exerts control on eco-hydrologic processes via alteration of energy inputs due to slope angle and orientation. Further, water availability varies with drainage position in response to topographic water redistribution and the catena effect on soil depth and thus soil water storage capacity. Our understanding of the spatio-temporal dynamics and drivers of transpiration patterns in complex terrain is still limited by lacking knowledge of how systematic interactions of energy and moisture patterns shape ecosystem state and water fluxes and adaptation of the vegetation to these patterns.
View Article and Find Full Text PDFForests are an important global carbon sink but their responses to climate change are uncertain. Tree stems, as the predominant carbon pool, represent net productivity in temperate eucalypt forests but the drivers of growth in these evergreen forests remain poorly understood partly because the dominant tree species lack distinct growth rings. Disentangling eucalypt species' growth responses to climate from other factors, such as competition and disturbances like fire, remains challenging due to a lack of long-term growth data.
View Article and Find Full Text PDF